Question

Here has mean and variance .

Now the sample mean is

i) The expected value of is

The variance of is

\

ii) Consider the estimator is

The expected value of is

Hence is an unbiased estimator of .

The variance is

Since the variance of is lesser than that of

we prefer the estimator .

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
• Let Yı, Y2, Ys, and Y4 be independent, identically distributed random variables from a mean u...

Let Yı, Y2, Ys, and Y4 be independent, identically distributed random variables from a mean u and a variance 02. Consider a different estimator of u: W=Y+Y2+2Y3+ Y 00 This is an example of a weighted average of the Y a) Show that W is a linear estimator. b) Is W an unbiased estimator of u? Show that it is - or it isn't (E(W) = Find the variance of W and compare it to the variance of the sample...

• Let Yi, Y2,.... Yn denote independent and identically distributed uniform random variables on the interval (0,4A)...

Let Yi, Y2,.... Yn denote independent and identically distributed uniform random variables on the interval (0,4A) obtain a method of moments estimator for λ, λ. Calculate the mean squared error of this estimator when estimating λ. (Your answer will be a function of the sample size n and λ

• Let Yi, Y2,.... Yn denote independent and identically distributed uniform random variables on the interval (0,4A)...

Let Yi, Y2,.... Yn denote independent and identically distributed uniform random variables on the interval (0,4A) obtain a method of moments estimator for λ, λ. Calculate the mean squared error of this estimator when estimating λ. (Your answer will be a function of the sample size n and λ

• Let Y1, Y2, . .. , Yn be independent and identically distributed random variables such that...

Let Y1, Y2, . .. , Yn be independent and identically distributed random variables such that for 0 < p < 1, P(Yi = 1) = p and P(H = 0) = q = 1-p. (Such random variables are called Bernoulli random variables.) a Find the moment-generating function for the Bernoulli random variable Y b Find the moment-generating function for W = Yit Ye+ … + . c What is the distribution of W? 1.

• Let X1,, Xn be independent and identically distributed random variables with unknown mean μ and unknown...

Let X1,, Xn be independent and identically distributed random variables with unknown mean μ and unknown variance σ2. It is given that the sample variance is an unbiased estimator of ơ2 Suggest why the estimator Xf -S2 might be proposed for estimating 2, justify your answer

• Question 3 15 marks] Let X1,..,X be independent identically distributed random variables with pdf common )...

Question 3 15 marks] Let X1,..,X be independent identically distributed random variables with pdf common ) = { (#)%2-1/64 0 fx (a;e) 0 where 0 >0 is an unknown parameter X-1. Show that Y ~ T (}, ); (a) Let Y (b) Show that 1 T n =1 is an unbiased estimator of 0-1 ewhere / (0; X) is the log- likeliho od function; (c) Compute U - (d) What functions T (0) have unbiased estimators that attain the relevant...

• Let X1,X2,...,Xn denote independent and identically distributed random variables with mean µ and variance 2. State...

Let X1,X2,...,Xn denote independent and identically distributed random variables with mean µ and variance 2. State whether each of the following statements are true or false, fully justifying your answer. (a) T =(n/n-1)X is a consistent estimator of µ. (b) T = is a consistent estimator of µ (assuming n7). (c) T = is an unbiased estimator of µ. (d) T = X1X2 is an unbiased estimator of µ^2. We were unable to transcribe this imageWe were unable to transcribe...

• 9. Let X and Y be independent and identically distributed random variables with mean u and...

9. Let X and Y be independent and identically distributed random variables with mean u and variance o. Find the following: (a) E[(x + 2)] (b) Var(3x + 4) (c) E[(X-Y)] (d) Cov{(X + Y), (X - Y)}

• Suppose Y1, Y2, …, Yn are independent and identically distributed random variables from a uniform distribution...

Suppose Y1, Y2, …, Yn are independent and identically distributed random variables from a uniform distribution on [0,k]. a. Determine the density of Y(n) = max(Y1, Y2, …, Yn). b. Compute the bias of the estimator k = Y(n) for estimating k.

• Question 6 Let X1, . . . , Xn denote a sequence of independent and identically...

Question 6 Let X1, . . . , Xn denote a sequence of independent and identically distributed i.id. N(14x, σ2) random variables, and let Yı, . . . , Yrn denote an independent sequence of iid. Nụy, σ2) ran- dom variables. il Λί and Y is an unbiased estimator of μ for any value of λ in the unit interval, i.e. 0 < λ < 1. 2. Verify that the variance of this estimator is minimised when and determine the...