Question

Chapter 15: 1. Shear plane angle and shear strain: In an orthogonal cutting operation, the tool...

Chapter 15:

1. Shear plane angle and shear strain: In an orthogonal cutting operation, the tool has a rake angle = 16°. The chip thickness before the cut = 0.32 mm and the cut yields a deformed chip thickness = 0.72 mm. Calculate (a) the shear plane angle and (b) the shear strain for the operation. 2. Shear strength: The cutting force and thrust force have been measured in an orthogonal cutting operation to be 301 lb and 291 lb, respectively. The rake angle = 12°, width of cut = 0.400 in, chip thickness before the cut = 0.018 in, and chip thickness ratio = 0.40. Determine (a) the shear strength of the work material and (b) the coefficient of friction in the operation. 3. Cutting temperature: Orthogonal cutting is performed on a metal whose mass specific heat = 1.2 J/g‑C, density = 2.96 g/cm3, and thermal diffusivity = 0.86 cm2/s. The cutting speed is 5.6 m/s, uncut chip thickness is 0.28 mm, and width of cut is 3.3 mm. The cutting force is measured at 1190 N. Using Cook's equation, determine the cutting temperature if the ambient temperature = 25 ° C. Chapter 17 4. Tool life determination: Flank wear data were collected in a series of turning tests using a coated carbide tool on hardened alloy steel at a feed of 0.30 mm/rev and a depth of 4.0 mm. At a speed of 100 m/min, flank wear = 0.12 mm at 1 min, 0.27 mm at 5 min, 0.45 mm at 11 min, 0.60 mm at 15 min, 0.75 at 20 min, and 0.99 mm at 25 min. At a speed of 155 m/min, flank wear = 0.22 mm at 1 min, 0.47 mm at 5 min, 0.70 mm at 9 min, 0.80 mm at 11 min, and 0.95 mm at 13 min. The last value in each case is when final tool failure occurred. (a) plot flank wear as a function of time for both speeds. You may use Excel to help yourself to plot the curve. Using 0.75 mm of flank wear as the criterion of tool failure, determine the tool lives for the two cutting speeds. (b) Calculate the values of n and C in the Taylor equation solving simultaneous equations.

This is based out of Introduction to Manufacturing Processes

Please submit the solution procedure as a PDF or Word document as an attachment.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Chapter 15: 1. Shear plane angle and shear strain: In an orthogonal cutting operation, the tool...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Manufacturing of Engineering 21.1. In an orthogonal cutting operation, the tool has a rake angle=15°.The chip...

    Manufacturing of Engineering 21.1. In an orthogonal cutting operation, the tool has a rake angle=15°.The chip thickness before the cut          = 0.30 mm and the cut yields a deformed chip thickness = 0.65 mm. Calculate (a) the shear plane angle and (b) the shear strain for the operation. 21.2 In Problem 21.1, suppose the rake angle were changed to a α= 0°. Assuming that the friction angle remains the same, determine (a) the shear plane angle, (b) the chip thickness,...

  • 1. The cutting conditions in a turning operation are v=2m/s f=. 25 mm. and d 3.0...

    1. The cutting conditions in a turning operation are v=2m/s f=. 25 mm. and d 3.0 mm. The tool rake angle 10 degrees, which produces a deformed chip thickness t c = 0.54 mm. Determine (a) shear plane angle, (b) shear strain. and (c) material removal rate. Use the orthogonal cutting model as an approximation of the turning process. 3. The cutting force and thrust force have been measured in an orthogonal cutting operation: Fc = 300 lb and Fc...

  • Manufacturing Q10 - The shear strength of a certain work material 50,000 lb'in". An orthogonal cutting...

    Manufacturing Q10 - The shear strength of a certain work material 50,000 lb'in". An orthogonal cutting operation is perfommed using a tool with a rake angle = 20° at the following cutting conditions: cutting speed = 100 ft/min, chip thickness before the cut = 0.015 in, and width of cut = 0.150 in. The resulting chip thickness ratio = 0.50. Determine (a) the shear plane angle; (b) shear force; (c) cutting force and thrust force, and (d) friction force. wers:...

  • In an orthogonal metal cutting test in a turning operation, the following conditions were recorded cutting...

    In an orthogonal metal cutting test in a turning operation, the following conditions were recorded cutting speed = 160 m/min, feed = 0.28 mm/rev, width of cut-2.4 mm, rake angle-70. After the cut, the deformed chip thickness 0.45 mm, cutting force-950 N and thrust 400 N. Determine (a) shear plane angle, (b) The friction angle, (c) The specific energy of workpiece material, (d) The shear stress on shear plane (e) The friction force (f) The shear strain during the deformation...

  • 1. A certain work material has shear strength of = 50,000 lb/in. An orthogonal cutting operation...

    1. A certain work material has shear strength of = 50,000 lb/in. An orthogonal cutting operation is performed using a tool with a rake angle = 20° at the following cutting conditions: cutting speed - 100 ft/min, chip thickness before the cut = 0.015 in, and width of cut = 0.150 in. The resulting chip thickness ratio = 0.50. Determine (a) The shear plane angle; (b) Shear force; (c) Cutting force and thrust force, and (d) Friction force. 2.1 The...

  • Kindly provide with clear step by step solution An orthogonal cutting operation is being carried out...

    Kindly provide with clear step by step solution An orthogonal cutting operation is being carried out under the following conditions: depth of cut-0.10 mm, width of cut 5 mm, chip thickness-0.2 mm, cutting speed = 2 m/s, rake angle = 15°, cutting force-500 N, and thrust force-200 N. Calculate the percentage of the total energy that is dissipated in the shear plane during cutting.

  • In a turning operation, cutting speed = 1.8 m/s, feed = 0.30 mm/rev, and depth of...

    In a turning operation, cutting speed = 1.8 m/s, feed = 0.30 mm/rev, and depth of cut = 2.6 mm. Rake angle = 8°. After the cut, the deformed chip thickness = 0.56 mm and before the cut, the chip thickness = 0.26 mm. Determine (a) shear plane angle, (b) shear strain, and (c) material removal rate. Use the orthogonal cutting model as an approximation of turning

  • QUESTION 5 During the orthogonal cutting of medium carbon steel rod with diameter of 75 mm...

    QUESTION 5 During the orthogonal cutting of medium carbon steel rod with diameter of 75 mm and yield strength of 240 N/mm², the following machining data were used: Rake angle = 12°C Spindle speed = 950 rev/min Chip thickness ratio = 0.25 mm Depth of cut = 0.8 mm Width of cut = 5.0 mm Horizontal component of the cutting force = 1000 N The vertical component of the cutting force = 1400 N Calculate the following: (a) Shear plane...

  • Low carbon steel having a tensile strength of 300 MPa and a shear strength of 220...

    Low carbon steel having a tensile strength of 300 MPa and a shear strength of 220 MPa is cut in a turning operation with a cutting speed of 3.0 m/s. The feed is 0.20 mm/rev and the depth of cut is 3.0 mm. The rake angle of the tool is 5 in the direction of chip flow. The resulting chip ratio is 0.45. Using the orthogonal model as an approximation of turning, determine (a) the shear plane angle, (b) shear...

  • 21.33. An orthogonal cutting operation is performed on a certain metal whose volumetric specific heat =...

    21.33. An orthogonal cutting operation is performed on a certain metal whose volumetric specific heat = 110 in-lb/in3-F, and thermal diffusivity = 0.140 in2/sec. The following cutting conditions are used: cutting speed = 350 ft/min, chip thickness before the cut= 0.008 in, and width of cut = 0.100 in. The cutting force is measured at 200 lb. Using Cook’s equation, determine the cutting temperature if the ambient temperature = 70°F.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT