The variable Z has a standard normal distribution. The probability P(1.27 < Z < 2.19) is:
a. 
0.9852 

b. 
0.1020 

c. 
0.8830 

d. 
0.8832 
QUESTION 6
The probability P(1.45<= Z <= 0) is:
a. 
0.9929 

b. 
0.0735 

c. 
0.4265 

d. 
0.5071 
3
If P(Z > z) = 0.7881, then the zscore is:
a. 
0.80 

b. 
0.80 

c. 
0.58 

d. 
0.58 
The variable Z has a standard normal distribution. The probability P(1.27 < Z < 2.19) is:...
Find the following z values for the standard normal variable Z. (You may find it useful to reference the z table. Negative values should be indicated by a minus sign. Round your answers to3 decimal places.) a. P(Z s z)0.1020 b. P(z s Z s 0)0.1772 c. P(Z> z) 0.9929 d. P(0.40 sZsz) 0.3368
Find the following z values for the standard normal variable Z. (You may find it useful to reference the z table. Negative values should be indicated by a minus sign. Round your answers to 3 decimal places.) a. P(Z S z) 0.1020 b. P(z s Zs0) 0.1772 c. P(Z> z)0.9929 d. P(0.40 sZz)0.3368 1.270 2.450
For a standard normal distribution, find: P(z 2.19) Points possible: 1 This is attempt 1 of 1
Standard Normal distribution. With regards to a standard normal distribution complete the following: (a) Find P(Z > 0), the proportion of the standard normal distribution above the zscore of 0. (b) Find P(Z <0.75), the proportion of the standard normal distribution below the Zscore of 0.75 (c) Find P(1.15<z <2.04). (d) Find P(Z > 1.25). (e) Find the Zscore corresponding to Pso, the 90th percentile value.
Let z be a random variable with a standard normal distribution. Calculate the indicated probability P(−1.15≤ z ≤1.55)P(−1.15≤ z ≤1.55).
Find the following probabilities for a standard normal variable, Z 1) P(Z<1.27) 2) P(2.03<Z<3.49) 3) P(Z>1.74) 4)P(Z<0.17) B. Find z if we know that the area to the left of z (under the normal curve) is 0.9265.
2. Random variable Z has the standard normal distribution. Find the following probabilities a): P[Z > 2] b) : P[0.67 <z c): P[Z > 1.32] d): P(Z > 1.96] e): P[1 <Z <2] : P[2.4 < Z < 1.2] g): P[Z0.5) 3. Random variable 2 has the standard normal distribution. Find the values from the following probabilities. a): P[Z > 2)  0.431 b): P[:<] 0.121 c): P[Z > 2] = 0.978 d): P[2] > 2] 0.001 e): P[ <Z...
Let z be a random variable with a standard normal distribution. Find the indicated probability below P(0.5 1.4) Select one: a. 0.919 li), о.419 O b. C. 0.816 d. 0.309 e. 0.228 o
IS Find the following probability for the standard normal random variable z. a. P(z<1.02) b. P(z <2.03) c. P(0.68 szs2.03) d. P(2.66szs1.56) a. P(z 1.02)(Round to four decimal places as needed.) b. Pize 2.03)=[] (Round to four decimal places as needed.) ook c. P(0.68 szs2.03) (Round to four decimal places as needed.) d.P(2.66 s zs 1.56) = [□ (Round to four decimal places as needed.)
if z is a standard normal variable find the probability that (p(0.73) < z <2.27 If z is a standard normal variable find the probability that p(z < 2.01)