Question

The osmotic pressure of an aqueous solution at 300 K is 120 kPa. Calculate the freezing...

The osmotic pressure of an aqueous solution at 300 K is 120 kPa. Calculate the freezing point of the solution.

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

The relation between the osmotic pressure and the depression in freezing point can be given, as follows:

$$ \Delta \mathrm{T}=\frac{\mathrm{K}_{\mathrm{f}} \pi}{\mathrm{RT} \rho_{\mathrm{H}_{2} \mathrm{O}}} $$

Here \(\pi\) is the osmotic pressure and \(\mathrm{K}_{\mathrm{f}}\) is the freezing point constant of the solution, \(\rho_{\mathrm{H}_{2} \mathrm{O}}\) is the density of water, \(\mathrm{R}\) is the universal gas constant, \(\mathrm{T}\) is the given temperature in Kelvin, and \(\Delta \mathrm{T}\) is the depression in freezing point.

Given that, \(\pi=120 \mathrm{kPa}, \mathrm{T}=300 \mathrm{~K}\)

Calculate the concentration depression in freezing point, as follows:

$$ \begin{aligned} \Delta \mathrm{T} &=\frac{\mathrm{K}_{i} \pi}{\mathrm{RT} \rho_{\mathrm{H}_{2} \mathrm{O}}} \\ &=\frac{1.86^{\circ} \mathrm{C} \cdot \mathrm{kg} \cdot \mathrm{mol}^{-1} \times 120 \mathrm{kPa}}{8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 300 \mathrm{~K} \times 1000 \mathrm{~kg} \cdot \mathrm{m}^{-3}} \\ &=\frac{1.86^{\circ} \mathrm{C} \cdot \mathrm{kg} \cdot \mathrm{mol}^{-1} \times 120 \times 1000 \mathrm{~J} \cdot \mathrm{m}^{-3}}{8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 300 \mathrm{~K} \times 1000 \mathrm{~kg} \cdot \mathrm{m}^{-3}} \\ &=0.0895^{\circ} \mathrm{C} \end{aligned} $$

The \(\Delta \mathrm{T}\) is the difference in actual freezing point and the observed freezing point. That is, \(\Delta \mathrm{T}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}^{\prime}\)

Here, \(\mathrm{T}_{\mathrm{f}}\) is the actual freezing point and \(\mathrm{T}_{\mathrm{f}}^{\prime}\) is the observed freezing point.

As it is known, the freezing point of water is \(\mathrm{T}_{\mathrm{f}}=0^{\circ} \mathrm{C}\).

Calculate the observed freezing point, as follows:

$$ \begin{aligned} \Delta \mathrm{T} &=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}^{\prime} \\ 0.0895{ }^{\circ} \mathrm{C} &=0.0^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{f}}^{\prime} \\ \mathrm{T}_{\mathrm{f}}^{\prime} &=0.0^{\circ} \mathrm{C}-0.0895{ }^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{f}}^{\prime} &=-0.0895^{\circ} \mathrm{C} \end{aligned} $$

Hence, the freezing point of the solution is \(-0.0895{ }^{\circ} \mathrm{C}\).

Add a comment
Know the answer?
Add Answer to:
The osmotic pressure of an aqueous solution at 300 K is 120 kPa. Calculate the freezing...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT