Question

1) A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 16.0 mL of KOH....

1) A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 16.0 mL of KOH.

Express your answer numerically.   pH=_______ 

2) A 75.0-mL volume of 0.200 M NH3 (Kb = 1.8 x10-5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 13.0 mL of HNO3.

Express your answer numerically.   pH=_______ 

3) A 52.0-mL volume of 0.35 M CH3COOH (Ka = 1.8 x10-5 ) is titrated with 0.40 M NaOH. Calculate the pH after the addition of 17.0 mL of NaOH.

Express your answer numerically.   pH=_______ 

1 1
Add a comment Improve this question Transcribed image text
Answer #1
Concepts and reason

The concept used to solve this question is to calculate the pH of the solution during the acid-base titration in three different cases. 1) Titration of strong acid HBr with strong base KOH solution, 2) Titration of strong acid HNO3{\rm{HN}}{{\rm{O}}_{\rm{3}}} with weak base NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} solution, 3) Titration of weak acid, CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} with strong base, NaOH solution

To calculate the pH of the solution, the nature of the solution should be known whether it is acidic or basic in case of titration of strong acid with strong base.

When either weak acid or weak base is used in the titration then the pH of the solution calculated depending on the nature of species present in the solution.

Fundamentals

Titration is a common analytical technique which is used to measure the amounts of compounds in solution. The glassware called a buret which holds one of the reactants, called the titrant, and well-situated adds it into a reaction vessel which contains the second reactant.

Either acid or base can be a titrant in the titration process. The calculation of pH depends on the nature of acid or base.

If both acid and base used in the titration are strong then it can be calculated by knowing the nature of the solution during the titration. If the solution is acidic the concentration of H+{{\rm{H}}^ + } affects the pH of the solution and if the solution is basic then the concentration of OH{\rm{O}}{{\rm{H}}^ - } ion affects the pH of the solution.

The weak acid or weak base is partially ionized. Thus, when either weak acid or weak base is used in the titration then the pH of the solution calculated depending on the nature of species present in the solution. Before the equivalence point, the pH depends on the concentration of weak acid and conjugate base (or weak base and conjugate acid) in the solution. At the equivalence point, the pH depends on the concentration of conjugate base (or conjugate acid) in the solution. Beyond the equivalence point, the pH depends on the concentration of OH{\rm{O}}{{\rm{H}}^ - } (or H+) in the solution

1)

The given acid is HBr and base is KOH so it is a titration of strong acid with strong base.

Given,

The concentration of HBr solution = 0.15 M.

The volume of HBr solution = 50.0 mL = 0.05 L.

The concentration of KOH solution = 0.25 M.

The volume of KOH solution added = 16 mL = 0.016.

ThenumberofmolesofHBrsolution=concentration×volumeinlitre=0.15moles/L×0.05L=0.0075moles\begin{array}{c}\\{\rm{The number of moles of HBr solution = concentration }} \times {\rm{ volume in litre}}\\\\{\rm{ = 0}}{\rm{.15 moles /L }} \times {\rm{ 0}}{\rm{.05 L}}\\\\{\rm{ = 0}}{\rm{.0075 moles}}\\\end{array}

ThenumberofmolesofKOHsolution=concentration×volumeinlitre=0.25moles/L×0.016L=0.004moles\begin{array}{c}\\{\rm{The number of moles of KOH solution = concentration }} \times {\rm{ volume in litre}}\\\\{\rm{ = 0}}{\rm{.25 moles /L }} \times {\rm{ 0}}{\rm{.016 L}}\\\\{\rm{ = 0}}{\rm{.004 moles}}\\\end{array}

The chemical reaction of KOH with HBr is an acid-base reaction, which is shown below.

KOH+HBrKBr+H2O{\rm{ KOH + HBr }} \to {\rm{ KBr + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}

Hence, 1 mole of KOH solution neutralizes 1 mole of HBr solution.

Therefore, 0.004 moles of KOH solution neutralizes 0.004 moles of HBr solution. Hence there will be excess of HBr present in the solution so the solution is acidic.

ThenumbermolesofexcessHBrinthesolution=0.0075moles0.004moles=0.0035moles\begin{array}{c}\\{\rm{The number moles of excess HBr in the solution = 0}}{\rm{.0075 moles - 0}}{\rm{.004 moles}}\\\\ = {\rm{ 0}}{\rm{.0035 moles}}\\\end{array}

Thetotalvolumeofsolution=50mL+16mL=66mL=0.066L\begin{array}{c}\\{\rm{The total volume of solution = 50 mL + 16 mL}}\\\\{\rm{ = 66 mL}}\\\\{\rm{ = 0}}{\rm{.066 L}}\\\end{array}

TheconcentrationofexcessHBrsolution=NumberofmolesTotalvolumeinlitres=0.0035moles0.066L=0.053M\begin{array}{c}\\{\rm{The concentration of excess HBr solution = }}\frac{{{\rm{Number of moles}}}}{{{\rm{Total volume in litres}}}}\\\\ = \frac{{{\rm{0}}{\rm{.0035 moles}}}}{{{\rm{0}}{\rm{.066 L}}}}{\rm{ }}\\\\{\rm{ = 0}}{\rm{.053 M}}\\\end{array}

Hence, theconcentrationofH+ion,[H+]=0.053M{\rm{the concentration of H + ion, [H + ] = 0}}{\rm{.053 M}} .

The pH of the solution can be calculated by the following formula.

pH=log[H+]{\rm{pH = - log[}}{{\rm{H}}^{\rm{ + }}}{\rm{]}}

The pH of the given solution is calculated as follows:

pH=log(0.053)=1.27\begin{array}{c}\\{\rm{pH = - log(0}}{\rm{.053)}}\\\\{\rm{ = 1}}{\rm{.27}}\\\end{array}

Therefore, the pH of the given solution is 1.27.

2)

Given,

The concentration of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} solution is 0.2 M.

The volume of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} solution is 75.0 mL = 0.075 L.

The concentration of HNO3{\rm{HN}}{{\rm{O}}_{\rm{3}}} solution is 0.5 M.

The volume of HNO3{\rm{HN}}{{\rm{O}}_{\rm{3}}} solution added is 13 mL = 0.013 L.

ThenumberofmolesofNH3solution=concentration×volumeinlitre=0.2moles/L×0.075L=0.015moles\begin{array}{c}\\{\rm{The number of moles of N}}{{\rm{H}}_{\rm{3}}}{\rm{ solution = concentration }} \times {\rm{ volume in litre}}\\\\{\rm{ = 0}}{\rm{.2 moles /L }} \times {\rm{ 0}}{\rm{.075 L}}\\\\{\rm{ = 0}}{\rm{.015 moles}}\\\end{array}

ThenumberofmolesofHNO3solution=concentration×volumeinlitre=0.5moles/L×0.013L=0.0065moles\begin{array}{c}\\{\rm{The number of moles of HN}}{{\rm{O}}_{\rm{3}}}{\rm{ solution = concentration }} \times {\rm{ volume in litre}}\\\\{\rm{ = 0}}{\rm{.5 moles /L }} \times {\rm{ 0}}{\rm{.013 L}}\\\\{\rm{ = 0}}{\rm{.0065 moles}}\\\end{array}

The titration of HNO3{\rm{HN}}{{\rm{O}}_{\rm{3}}} with NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} is a strong acid-weak base titration and HNO3{\rm{HN}}{{\rm{O}}_{\rm{3}}} is completely dissociated and NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} is partially dissociated.

The neutralization reaction is written as follows:

NH3(aq)+HNO3(aq)NH4+NO3(aq){\rm{N}}{{\rm{H}}_{\rm{3}}}{\rm{(aq) + HN}}{{\rm{O}}_{\rm{3}}}{\rm{(aq) }} \to {\rm{ N}}{{\rm{H}}_{\rm{4}}}^{\rm{ + }}{\rm{N}}{{\rm{O}}_{\rm{3}}}(aq)

The net ionic equation is as follows:

NH3(aq)+H+(aq)NH4+(aq){\rm{N}}{{\rm{H}}_{\rm{3}}}{\rm{(aq) + }}{{\rm{H}}^{\rm{ + }}}{\rm{(aq) }} \to {\rm{ N}}{{\rm{H}}_{\rm{4}}}^{\rm{ + }}(aq)

From the reaction, 1 mole of H+{{\rm{H}}^{\rm{ + }}} ions neutralizes 1 mole of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} solution to give 1 mole of conjugate acid of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} .

Therefore, 0.0065 moles of HNO3{\rm{HN}}{{\rm{O}}_{\rm{3}}} solution neutralizes 0.0065 moles of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} solution to give 0.0065 moles of NH4+{\rm{N}}{{\rm{H}}_{\rm{4}}}^ + .

Hence, there will be excess of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} solution present in the solution.

ThenumbermolesofexcessNH3inthesolution=0.015moles0.0065moles=0.0085moles\begin{array}{c}\\{\rm{The number moles of excess N}}{{\rm{H}}_{\rm{3}}}{\rm{ in the solution = 0}}{\rm{.015 moles - 0}}{\rm{.0065 moles}}\\\\ = {\rm{ 0}}{\rm{.0085 moles}}\\\end{array}

Thetotalvolumeofsolution=75mL+13mL=88mL=0.088L\begin{array}{c}\\{\rm{The total volume of solution = 75 mL + 13 mL}}\\\\{\rm{ = 88 mL}}\\\\{\rm{ = 0}}{\rm{.088 L}}\\\end{array}

TheconcentrationofexcessNH3solution=NumberofmolesTotalvolumeinlitre=0.0085moles0.088L=0.096M\begin{array}{c}\\{\rm{The concentration of excess N}}{{\rm{H}}_{\rm{3}}}{\rm{ solution = }}\frac{{{\rm{Number of moles}}}}{{{\rm{Total volume in litre}}}}\\\\ = \frac{{{\rm{0}}{\rm{.0085 moles}}}}{{{\rm{0}}{\rm{.088 L}}}}{\rm{ }}\\\\{\rm{ = 0}}{\rm{.096 M}}\\\end{array}

TheconcentrationofformedNH4+solution=NumberofmolesTotalvolumeinlitre=0.0065moles0.088L=0.0738M\begin{array}{c}\\{\rm{The concentration of formed N}}{{\rm{H}}_{\rm{4}}}^{\rm{ + }}{\rm{ solution = }}\frac{{{\rm{Number of moles}}}}{{{\rm{Total volume in litre}}}}\\\\ = \frac{{{\rm{0}}{\rm{.0065 moles}}}}{{{\rm{0}}{\rm{.088 L}}}}{\rm{ }}\\\\{\rm{ = 0}}{\rm{.0738 M}}\\\end{array}

As NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} is a weak base it partially dissociates so at this point the solution is a buffer solution of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} and NH4+{\rm{N}}{{\rm{H}}_{\rm{4}}}^ + .

Hence, the pOH of the solution can be calculated by using Henderson-Hasselbalch equation for base, which is written as follows:

pOH=pKb+log[NH4+][NH3]{\rm{pOH = p}}{{\rm{K}}_{\rm{b}}}{\rm{ + log}}\frac{{{\rm{[N}}{{\rm{H}}_{\rm{4}}}^{\rm{ + }}{\rm{]}}}}{{{\rm{[N}}{{\rm{H}}_{\rm{3}}}{\rm{]}}}}

The base dissociation constant of NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} , Kb=1.8×105{{\rm{K}}_{\rm{b}}}{\rm{ = 1}}{\rm{.8 }} \times {\rm{ 1}}{{\rm{0}}^{{\rm{ - 5}}}}

pKb=logKb{\rm{p}}{{\rm{K}}_{\rm{b}}}{\rm{ = - log}}{{\rm{K}}_{\rm{b}}}

Substitute the value of Kb{{\rm{K}}_{\rm{b}}} in the above equation, then pKb{\rm{p}}{{\rm{K}}_{\rm{b}}} for NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} = 4.75.

Substitute the values of pKb{\rm{p}}{{\rm{K}}_{\rm{b}}} , [ NH4+{\rm{N}}{{\rm{H}}_{\rm{4}}}^ + ] and [ NH3{\rm{N}}{{\rm{H}}_{\rm{3}}} ] in the Henderson-Hasselbalch equation for base, then

pOH=4.75+log0.07380.096=4.750.1142=4.635\begin{array}{c}\\{\rm{pOH = 4}}{\rm{.75 + log}}\frac{{0.0738}}{{0.096}}\\\\ = {\rm{ 4}}{\rm{.75 - 0}}{\rm{.1142}}\\\\{\rm{ = 4}}{\rm{.635}}\\\end{array}

The pH of the buffer solution is calculated as follows:

pH=14pOH=144.635pH=9.365\begin{array}{c}\\{\rm{pH = }}14 - {\rm{pOH}}\\\\{\rm{ = 14 - 4}}{\rm{.635}}\\\\{\rm{pH = 9}}{\rm{.365}}\\\end{array}

Therefore, the pH of the solution is 9.365.

3)

Given,

The concentration of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} solution is 0.35 M.

The volume of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} solution = 52.0 mL = 0.052 L.

The concentration of NaOH solution is 0.4 M.

The volume of NaOH solution added = 17 mL = 0.017 L.

ThenumberofmolesofCH3COOHsolution=concentration×volumeinlitre=0.35moles/L×0.052L=0.0182moles\begin{array}{c}\\{\rm{The number of moles of C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH solution = concentration }} \times {\rm{ volume in litre}}\\\\{\rm{ = 0}}{\rm{.35 moles /L }} \times {\rm{ 0}}{\rm{.052 L}}\\\\{\rm{ = 0}}{\rm{.0182 moles}}\\\end{array}

ThenumberofmolesofNaOHsolution=concentration×volumeinlitre=0.4moles/L×0.017L=0.0068moles\begin{array}{c}\\{\rm{The number of moles of NaOH solution = concentration }} \times {\rm{ volume in litre}}\\\\{\rm{ = 0}}{\rm{.4 moles /L }} \times {\rm{ 0}}{\rm{.017 L}}\\\\{\rm{ = 0}}{\rm{.0068 moles}}\\\end{array}

The titration of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} with NaOH is a weak acid-strong base titration, in which NaOH is completely dissociated and CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} is partially dissociated.

The neutralization reaction is written as follows:

CH3COOH(aq)+NaOH(aq)CH3COONa(aq)+H2O(l){\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH(aq) + NaOH(aq) }} \to {\rm{ C}}{{\rm{H}}_{\rm{3}}}{\rm{COONa}}(aq){\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O (l)}}

The net ionic equation is as follows:

CH3COOH(aq)+OH(aq)CH3COO(aq)+H2O(l){\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH(aq) + O}}{{\rm{H}}^{\rm{ - }}}{\rm{(aq) }} \to {\rm{ C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}}(aq){\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O (l)}}

Hence, 1 mole of OH{\rm{O}}{{\rm{H}}^ - } ions neutralizes 1 mole of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} solution to give 1 mole of conjugate base of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} .

Therefore, 0.0068 moles of NaOH solution neutralizes 0.0068 moles of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} solution to give 0.0065 moles of CH3COO{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}} .

Thus, there will be excess of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} present in the solution.

ThenumbermolesofexcessCH3COOHinthesolution=0.0182moles0.0068moles=0.0114moles\begin{array}{c}\\{\rm{The number moles of excess C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH in the solution = 0}}{\rm{.0182 moles - 0}}{\rm{.0068 moles}}\\\\ = {\rm{ 0}}{\rm{.0114 moles}}\\\end{array}

Thetotalvolumeofsolution=52mL+17mL=69mL=0.069L\begin{array}{c}\\{\rm{The total volume of solution = 52 mL + 17 mL}}\\\\{\rm{ = 69 mL}}\\\\{\rm{ = 0}}{\rm{.069 L}}\\\end{array}

TheconcentrationofexcessCH3COOHsolution=NumberofmolesTotalvolumeinlitre=0.0114moles0.069L=0.165M\begin{array}{c}\\{\rm{The concentration of excess C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH solution = }}\frac{{{\rm{Number of moles}}}}{{{\rm{Total volume in litre}}}}\\\\ = \frac{{{\rm{0}}{\rm{.0114 moles}}}}{{{\rm{0}}{\rm{.069 L}}}}{\rm{ }}\\\\{\rm{ = 0}}{\rm{.165 M}}\\\end{array}

TheconcentrationofformedCH3COOsolution=NumberofmolesTotalvolumeinlitre=0.0068moles0.069L=0.0985M\begin{array}{c}\\{\rm{The concentration of formed C}}{{\rm{H}}_{\rm{3}}}{\rm{COO - solution = }}\frac{{{\rm{Number of moles}}}}{{{\rm{Total volume in litre}}}}\\\\ = \frac{{{\rm{0}}{\rm{.0068 moles}}}}{{{\rm{0}}{\rm{.069 L}}}}{\rm{ }}\\\\{\rm{ = 0}}{\rm{.0985 M}}\\\end{array}

As CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} is a weak acid it partially dissociates so at this point the solution is a buffer solution of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} and CH3COO{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}} .

Hence, the pH of the solution can be calculated by using Henderson-Hasselbalch equation for acid, which is written as follows:

pH=pKa+log[CH3COO][CH3COOH]{\rm{pH = p}}{{\rm{K}}_a}{\rm{ + log}}\frac{{{\rm{[C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}}{\rm{]}}}}{{{\rm{[C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH]}}}}

The acid dissociation constant of CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} , Ka=1.8×105{{\rm{K}}_{\rm{a}}}{\rm{ = 1}}{\rm{.8 }} \times {\rm{ 1}}{{\rm{0}}^{{\rm{ - 5}}}}

pKa=logKa{\rm{p}}{{\rm{K}}_{\rm{a}}}{\rm{ = - log}}{{\rm{K}}_{\rm{a}}}

Substitute the value of Kb{{\rm{K}}_{\rm{b}}} in the above equation, then pKa{\rm{p}}{{\rm{K}}_{\rm{a}}} for CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} = 4.75.

Substitute the values of pKa{\rm{p}}{{\rm{K}}_a} , [ CH3COO{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^{\rm{ - }}} ] and [ CH3COOH{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COOH}} ] in the Henderson-Hasselbalch equation for base, then

pH=4.75+log0.09850.165=4.750.224=4.526\begin{array}{c}\\{\rm{pH = 4}}{\rm{.75 + log}}\frac{{0.0985}}{{0.165}}\\\\ = {\rm{ 4}}{\rm{.75 - 0}}{\rm{.224}}\\\\{\rm{ = 4}}{\rm{.526}}\\\end{array}

Therefore, the pH of the solution is 4.526.

Ans: Part 1

Part 1

Answer

The pH of the given solution is 1.27.

Add a comment
Know the answer?
Add Answer to:
1) A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 16.0 mL of KOH....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT