Question

The three 240 g masses in the figure (Figure 1)are connected by massless, rigid rods.



The three 240 g masses in the figure (Figure 1)are connected by massless, rigid rods. 

image.png

 Part A 

What is the triangle's moment of inertia about the axis through the center? 


Part B 

What is the triangle's kinetic energy if it rotates about the axis at 4.0 rev/s?

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The three 240 g masses in the figure (Figure 1)are connected by massless, rigid rods.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The three 200 g masses in the figure (Figure 1) are connected by massless, rigid rods....

    The three 200 g masses in the figure (Figure 1) are connected by massless, rigid rods.  Part AWhat is the triangle's moment of inertia about the axis through the center?  Express your answer to two significant figures and include the appropriate units.  Part BWhat is the triangle's kinetic energy if it rotates about the axis at 6.0 rev/s?  Express your answer to two significant figures and include the appropriate units.

  • The three masses shown in (Figure 1) are connected by massless, rigid rods.

    The three masses shown in (Figure 1) are connected by massless, rigid rods. Part A Find the coordinates of the center of gravity. Part B Find the moment of inertia about an axis that passes through mass A and is perpendicular to the page. Part C Find the moment of inertia about an axis that passes through masses B and C. 

  • Three masses are connected by rigid massless rods, as shown. The 200-g mass (B) is located...

    Three masses are connected by rigid massless rods, as shown. The 200-g mass (B) is located at the origin (0, 0).  (a) Find the x- and y-coordinates of the center of mass.  (b) Find the moment of inertia of this system of three connected masses when rotated about the r-axis that passes through mass B?  (c) If this system is rotated about the r-axis, from rest to an angular speed of 6 rad/s in time t = 3 s, what...

  • The four masses shown in FIGURE EX12.13 are connected by massless, rigid rods.

    14. Il The four masses shown in FIGURE EX12.13 are connected by massless, rigid rods. a. Find the coordinates of the center of mass. b. Find the moment of inertia about a diagonal axis that passes through masses B and D.

  • Three point masses are connected by massless rods.

    Moment of inertia for point masses Three point masses are connected by massless rods. Determine the moment of inertia about an axis perpendicular to the page and that passes through a) the 150g mass, b) the 100 g mass, and c) the 200 g mass.  

  • Four masses are at corners of a rectangle connected by massless rods as shown in Figure...

    Four masses are at corners of a rectangle connected by massless rods as shown in Figure 0.27. (i) What is the moment of inertia of the system when the axis of rotation is along the x-axis? (ii) What is the moment of inertia of the system when the axis of rotation is along the y-axis? (iIi) What is the moment of inertia of the system when the axis of rotation goes through point O and is perpendicular to the xy-plane....

  • The four particles shown below are connected by rigid rods of negligible mass where y1 = 6.60 m.

    The four particles shown below are connected by rigid rods of negligible mass where y1 = 6.60 m. The origin is at the center of the rectangle. The system rotates in the xy plane about the z axis with an angular speed of 6.40 rad/s. (a) Calculate the moment of inertia of the system about the z axis.(b) Calculate the rotational kinetic energy of the system.

  • Four particles with masses 4 kg, 6 kg, 4 kg, and 6 kg are connected by rigid rods of negligible mass as shown.

    011. Four particles with masses 4 kg, 6 kg, 4 kg, and 6 kg are connected by rigid rods of negligible mass as shown. The origin is centered on the mass in the lower left corner. The rectangle is 6 m wide and 5 m long. If the system rotates in the xy plane about the z axis (origin, O) with an angular speed of 5 rad/s, calculate the moment of inertia of the system about the z axis. 012. Find the...

  • Four masses are arranged as shown. They are connected by rigid, massless rods of lengths 0.840...

    Four masses are arranged as shown. They are connected by rigid, massless rods of lengths 0.840 m and 0.500 m. What torque must be applied to cause an angular acceleration of 0.750 rad/s about the axis shown? B A T Lm A 4.00 kg B 3.00 kg Axis C5.00 kg D 2.00 kg 0.500 m- where L 0.840 | N-m

  • 5. Consider a rigid structure composed of point particles joined by massless rods. The particles are...

    5. Consider a rigid structure composed of point particles joined by massless rods. The particles are numbered 1,2.3.., N, and the particle masses are m, (v 1,2.., N). The locations of the particles with respect to the center of mass are R,. The entire structure rotates on an axis passing through the center of mass with an angular velocity W. Show that the angular momentum with respect to the center of mass is (A.3-26) Then show that the latter expression...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT