Question

a) A charged particle moves through a velocity selector at a constant speed in a straight...

a) A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 4070 N/C, while the magnetic field is 0.344 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 6.06 cm. Find the charge-to-mass ratio of the particle.

b) The 1600-turn coil in a dc motor has an area per turn of 2.3 × 10-2 m2. The design for the motor specifies that the magnitude of the maximum torque is 8.6 N·m when the coil is placed in a 0.20-T magnetic field. What is the current in the coil?

thanks!!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(ه for velocity felector- electric force = magnetic force qE qVB و اینا ۹۵۰ »s 344. ه S« ها .)193) :۷ Ispeed qVB کا مد هم او

Add a comment
Know the answer?
Add Answer to:
a) A charged particle moves through a velocity selector at a constant speed in a straight...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A charged particle moves through a velocity selector at a constant speed in a straight line....

    A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 3.20×10^3 N/C, while the magnetic field is 0.250 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 4.60 cm. Find the charge-to-mass ratio of the particle.

  • Please answer quickly, will upvote immediately! A charged particle moves through a velocity selector at a...

    Please answer quickly, will upvote immediately! A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 3.56E+3 N/C, while the magnetic field is 0.332 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 4.58 cm. Calculate the charge-to-mass ratio of the particle. Submit Answer Tries 0/10

  • 2) The 1200-turn coil in a dc motor has an area per turn of 1.6 x...

    2) The 1200-turn coil in a dc motor has an area per turn of 1.6 x 102m². The design for the motor specifies that the magnitude of the maximum torque is 5.2 N·m when the coil is placed in a 0.20-T magnetic field. What is the current in the coil?

  • An unknown charged particle is fired into a velocity selector . The magnetic field in the...

    An unknown charged particle is fired into a velocity selector . The magnetic field in the velocity selector is 1.2 T. If we would like to select for a speed of 400 m/s , what should the magnitude of the electric field be? An unknown charged particle is fired into a velocity selector. The magnetic field in the velocity selector is 1.2 T. If we would like to select for a speed of 400 m/s, what should the magnitude of...

  • is a velocity selector that can beused to measure the speed of a charged particle....

    is a velocity selector that can be used to measure the speed of a charged particle. A beam of particles is directed along the axis of the instrument. A parallel plate capacitor sets up an electric field E which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by 8 mm and the value of the magnetic field is 0.2 T, what voltage between the plates will allow particles of speed to pass straight through...

  • A charged particle moves in a straight line with constant speed through a region of space....

    A charged particle moves in a straight line with constant speed through a region of space. Which of the following electric and magnetic field configurations are consistent with this trajectory? (Assume gravity is negligible). a) the magnetic field is perpendicular to the particle's velocity and the electric field is zero. b) the magnetic field is perpendicular to the particle's velocity and there is a non-zero electric field. c) the magnetic field is parallel to the particle's velocity and the electric...

  • A velocity selector is used in accelerator mass spectrometry to select particles based on their speed.

    A velocity selector is used in accelerator mass spectrometry to select particles based on their speed. The velocity selector is composed of orthogonal electric and magnetic fields, such that particles with the correct charge to mass ratio and speed will be unaffected, and other particles will be deflected. If the Electric Field is oriented down, What is the direction of the Magnetic Field? A charged particle moves through the velocity selector at a constant speed in a straight line. The electric field...

  • The figure below shows the schematic for a mass spectrometer which consists of a velocity selector...

    The figure below shows the schematic for a mass spectrometer which consists of a velocity selector and a deflection chamber. The magnitude of the magnetic field in both the velocity selector and the deflection chamber is 0.0110 T, and the electric field between the plates of the velocity selector is 1600 V/m. If a singly charged ion with a mass of 6.70 times 10^-27 kg travels through the velocity selector and into the deflection chamber, determine the radius of its...

  • Velocity Selector-multiple choice

    The Velocity SelectorIn experiments where all the charged particles in a beam are required to have the same velocity (for example, when entering a mass spectrometer), scientists use a velocity selector. A velocity selector has a region of uniform electric and magnetic fields that are perpendicular to each other and perpendicular to the motion of the charged particles. Both the electric and magnetic fields exert a force on the charged particles. If a particle has precisely the right velocity, the...

  • The figure shows a velocity selector that can be used to measure the speed of a...

    The figure shows a velocity selector that can be used to measure the speed of a charged particle. A beam of particles is directed along the axis of the instrument. A parallel plate capacitor sets up an electric field E, which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by 2.0 mm and the value of the magnetic field is 0.60 T, what voltage between the plates will allow particles of speed 5.0

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT