Question

(Figure 1)Block 1. of mass m = 0.700 kg. is connected over an ideal (massless and frictionless) pulley to block 2 of mass m2


(Figure 1)Block 1. of mass m = 0.700 kg. is connected over an ideal (massless and frictionless) pulley to block 2 of mass m2, as shown For an angle of θ =30.0° and a coefficient of kinetic friction between block 2 and the plane of a = 0.350, an acceleration of magnitude α = 0 200 m/s2 is observed for block 2.

image.png

3 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
(Figure 1)Block 1. of mass m = 0.700 kg. is connected over an ideal (massless and frictionless) pulley to block 2 of mass m2
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block 1, of mass m1 = 0.700 kg , is connected over an ideal (massless and...

    Block 1, of mass m1 = 0.700 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0 ∘ and a coefficient of kinetic friction between block 2 and the plane of μ = 0.300, an acceleration of magnitude a = 0.300 m/s2 is observed for block 2. Find mass of block 2

  • Block 1, of mass m1 = 0.650 kg , is connected over an ideal (massless and...

    Block 1, of mass m1 = 0.650 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0 ∘ and a coefficient of kinetic friction between block 2 and the plane of μ = 0.250, an acceleration of magnitude a = 0.500 m/s2 is observed for block 2. Find the mass of block 2, m2. Express your answer numerically in kilograms.

  • Block 1, of mass = 0.550 , is connected over an ideal (massless and frictionless) pulley to...

    Block 1, of mass = 0.550 , is connected over an ideal (massless and frictionless) pulley to block 2, of mass , as shown. Assume that the blocks accelerate as shownwith an acceleration of magnitude = 0.250 and that the coefficient of kinetic friction between block 2 and the plane is = 0.250.Find the mass of block 2, , when = 30.0.

  • Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg ,...

    Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.500m/s2 is observed for block 2. -Find the mass of block 2, m2.?

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

  • A mass m, = 6.9 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 =2.4 kg that hangs freely.

     A mass m, = 6.9 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 =2.4 kg that hangs freely. 1) What is the magnitude of the acceleration of block 1? 2) What is the tension in the string?3)  Now the table is tilted at an angle of 9= 79' with respect to the vertical. Find the magnitude of the new acceleration of block 1. 4) At what “critical" angle will the blocks NOT...

  • A block of mass m1.95 kg and a block of mass m2 6.20 kg are connected...

    A block of mass m1.95 kg and a block of mass m2 6.20 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R 0.250 m and mass M-10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ-30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. M, R (a) Draw force diagrams of both blocks and of the pulley. Choose File no file...

  • Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure.

    Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure. The mass of block 2 is m2 = 10.5 kg, and the coefficient of kinetic friction between block 2 and the incline is μk = 0.200. The angle of the incline is 27.5°. If block 2 is moving up the incline at constant speed, what is the mass m1 of block 1? 

  • A block of mass m1 = 1.90 kg and a block of mass m2 = 6.50...

    A block of mass m1 = 1.90 kg and a block of mass m2 = 6.50 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. A wedge in the shape of a right trapezoid...

  • Two blocks are connected via a massless rope over a massless, frictionless pulley. Mass M =...

    Two blocks are connected via a massless rope over a massless, frictionless pulley. Mass M = 13.8 kg, and mass m = 5.65 kg. If they both have a coefficient kinetic friction of 0.424 what will the magnitude of the acceleration of this system be? Degree M= 70 Degree m = 40

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT