Question

A uniformly charged rod of length L and total charge Q lies along the x axis as shown in in the...

image.png

(a) Find thecomponents of the electric field at the point P on the y axis a distance d from the origin.

Ex=
Ey

(b) What are the approximate values of the field components when d >> L?

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

The other poster made some major errors. The solution below is completely correct.

The charge per unit length of the rod is:

$$ \sigma=\frac{Q}{L} $$

Any small element of the rod a distance \(x\) from the origin has a charge of:

dl \(\mathbf{q}=\sigma d \mathbf{x}=\frac{Q}{L} d \mathbf{x}\)

The distance. \(r\), between \(P\) and that element located a distance \(x\) from

the origin is:

$$ x=\sqrt{d^{2}+x^{2}} $$

The unit direction of the electric field at point \(P\) from that one element of the rod a distance \(x\) from the origin is:

$$ \vec{\lambda}=\frac{\{-x, d\}}{r}=\frac{\{-x, d\}}{\sqrt{d^{2}+x^{2}}} $$

Thus the electric field at \(P\) from that one element from Coulomb's law

is:

\(\mathrm{d} \overrightarrow{\mathrm{E}}=\) ke \(\frac{\mathrm{d} \mathrm{q}}{r^{2}} \vec{\lambda}\)

d\(\overrightarrow{\mathbf{E}}=\operatorname{ke} \frac{\mathrm{Q}}{\mathrm{L}}\left\{-\frac{\mathrm{x}}{\left(\mathrm{d}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}, \frac{\mathrm{d}}{\left(\mathrm{d}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}\right\} \mathrm{dx}\)

The total electric field at \(P\) from the rod is the sum of every \(d \vec{E}\) from

\(x=0\) to \(x=L\)

\(\overrightarrow{\mathrm{E}}=\operatorname{ke} \frac{\mathrm{Q}}{\mathrm{L}} \int_{0}^{\mathrm{L}}\left\{-\frac{\mathrm{x}}{\left(\mathrm{d}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}, \frac{\mathrm{d}}{\left(\mathrm{d}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}\right\} \mathrm{dx}\)

\(\overrightarrow{\mathrm{E}}=\operatorname{ke} \frac{\mathrm{Q}}{\mathrm{L}}\left\{\int_{0}^{\mathrm{L}}-\frac{\mathrm{x}}{\left(\mathrm{d}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dx}, \int_{0}^{\mathrm{L}} \frac{\mathrm{d}}{\left(\mathrm{d}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dx}\right\}\)

\(\overrightarrow{\mathrm{E}}=\operatorname{ke} \frac{\mathrm{Q}}{\mathrm{L}}\left\{\left(\frac{1}{\sqrt{\mathrm{d}^{2}+\mathrm{x}^{2}}}\right)_{0}^{\mathrm{L}},\left(\frac{\mathrm{x}}{\mathrm{d} \sqrt{\mathrm{d}^{2}+\mathrm{x}^{2}}}\right)_{0}^{\mathrm{L}}\right\}\)

\(\overrightarrow{\mathrm{E}}=\operatorname{ke} \frac{\mathrm{Q}}{\mathrm{L}}\left\{\frac{1}{\sqrt{\mathrm{d}^{2}+\mathrm{L}^{2}}}-\frac{1}{\mathrm{~d}}, \frac{\mathrm{L}}{\mathrm{d} \sqrt{\mathrm{d}^{2}+\mathrm{L}^{2}}}\right\}\)

And breaking into components yields:

\(\mathrm{Ex}=\operatorname{ke} \frac{\mathrm{Q}}{\mathrm{L}}\left(\frac{1}{\sqrt{\mathrm{d}^{2}+\mathrm{L}^{2}}}-\frac{1}{\mathrm{~d}}\right)\)

\(E y=\) ke \(Q \frac{1}{d \sqrt{d^{2}+L^{2}}}\)

When \(\mathrm{d}>>\mathrm{L}\), then we omit \(\mathrm{L}\) when it is grouped with \(\mathrm{d}\) since \(d^{2}+L^{2} \simeq d^{2}:\)

\(\overrightarrow{\mathrm{E}}=\operatorname{ke} \frac{\mathrm{Q}}{\mathrm{L}}\left\{\frac{1}{\mathrm{~d}}-\frac{1}{\mathrm{~d}}, \frac{\mathrm{L}}{\mathrm{d}^{2}}\right\}\)

\(E x=0\)

\(\mathrm{Ey}=\frac{\text { ke } \mathrm{Q}}{\mathrm{d}^{2}}\)

answered by: E.T
Add a comment
Know the answer?
Add Answer to:
A uniformly charged rod of length L and total charge Q lies along the x axis as shown in in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT