Question

Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of...

Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of 0.575 m . One sphere is negatively charged, with net charge -1.05 μC , and the other sphere is positively charged, with net charge 3.45 μC . The charge is uniformly distributed within the volume of each sphere.

What is the magnitude E of the electric field midway between the spheres?

Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

0 0
Add a comment Improve this question Transcribed image text
Answer #1

electric field at mid way

E = k / (r/2) * (q1 + q2)

E = 2*9*10^9* (1.05 + 3.45)*10^-6 / 0.575^2

E = 2.45*10^5 N/C

=======

Comment in case any doubt, will reply for sure.. Goodluck

Add a comment
Know the answer?
Add Answer to:
Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two small insulating spheres with radius 7.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 7.00×10−2 m are separated by a large center-to-center distance of 0.575 m . One sphere is negatively charged, with net charge -1.70 μC , and the other sphere is positively charged, with net charge 3.90 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • Two small insulating spheres with radius 6.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 6.00×10−2 m are separated by a large center-to-center distance of 0.600 m . One sphere is negatively charged, with net charge -1.05 μC , and the other sphere is positively charged, with net charge 3.30 μC. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540...

    Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540 m. One sphere is negatively charged, with net charge -1.35 μC, and the other sphere is positively charged, with net charge 3.85 μC. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2). I tried: 3.57*10*-5 N/C

  • Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540...

    Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540 m. One sphere is negatively charged, with net charge -1.35 μC, and the other sphere is positively charged, with net charge 3.85 μC. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2). I tried: 3.57*10*^-5 N/C, 3.57*10^-5...

  • Two small insulating spheres with radius 9.00*10^-2m are separated by a large center-to-center distance of 0.520m...

    Two small insulating spheres with radius 9.00*10^-2m are separated by a large center-to-center distance of 0.520m . One sphere is negatively charged, with net charge -2.40uC , and the other sphere is positively charged, with net charge 3.35uC . The charge is uniformly distributed within the volume of each sphere. a) What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ?0 = 8.85

  • Two small insulating spheres

    Two small insulating spheres with radius 5.50×10-2 are separated by a large center-to-center distance of 0.575 . One sphere is negatively charged, with net charge-1.25 , and the other sphere is positively charged, with net charge 3.30 . The charge is uniformly distributed within the volume of each sphere.What is the magnitude of the electric field midway between the spheres?Take the permittivity of free space to be = 8.85×10-12 . C^2/(N*m^2)

  • Part A Two small insulating spheres with radius 9.00x10-2 m are separated by a large center-to-center...

    Part A Two small insulating spheres with radius 9.00x10-2 m are separated by a large center-to-center distance of 0.585 m. One sphere is negatively charged, with net charge -1.75 C, and the other sphere is positively charged, with net charge 3.35 C. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be eo = 8.85x10-12 C2/(N m )....

  • What is the magnitude E of the electric field midway between the spheres?

    Two small insulating spheres with radius \(9.00 \times 10^{\wedge}-2 \mathrm{~m}\) are separated by a large center-tocenter distance of \(0.450 \mathrm{~m}\). One sphere is negatively charged, with netcharge \(-1.40 \mu \mathrm{C},\) and the other sphere is positively charged, with net charge \(4.50 \mu \mathrm{C}\). The charge is uniformly distributed within the volume of each sphere.What is the magnitude \(E\) of the electric field midway between the spheres?Take the permittivity of free space to be \(\epsilon_{0}=8.85 \times 10-12\) \(\mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)\)

  • A total charge of 15.0 nC is distributed uniformly through an insulating sphere with a radius...

    A total charge of 15.0 nC is distributed uniformly through an insulating sphere with a radius of 8.00 cm. The total electric flux (in N m2/C) through a concentric sphere with a radius of 4.00 cm is: K = 9 x 10+9 N.m2.C-2 , ε0 = 8.85 x 10-12 C2.N-1.m-2

  • Consider two, conducting spheres, separated by a large distance. Sphere A has a radius of 0.85...

    Consider two, conducting spheres, separated by a large distance. Sphere A has a radius of 0.85 m and sphere B has a radius of 1.25 m. Sphere A is charged to a potential of -25 V and sphere B is charged to a potential of +18 V. The spheres are then connected by a thin, conducting wire. Part A) What is the initial charge of Sphere A, in Coulombs? Part B) What is the initial charge of Sphere B, in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT