Question

A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass...

A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’samplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string.

Give the values of A, k, and , for the original wave, as well as k and the reflected wave and the transmitted wave.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sinusoidal transverse wave is travelling along a string in the negative direction of an x...

    A sinusoidal transverse wave is travelling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t = 0; the y intercept is 4.0 cm. The string tension is 3.3 N, and its linear density is 44 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave, (e) Find the maximum transverse speed of a particle in the...

  • A sinusoidal wave moving along a string under tension is described by the equation D ?,?...

    A sinusoidal wave moving along a string under tension is described by the equation D ?,? =0.002sin(10?−120?)(inSIunit) Where ? is the transverse displacement of the string, ? is the distance along the string and ? is the time. Find a) Amplitude of the transverse displacement of the string b) The wavelength of the traveling wave c) Its frequency of oscillation, and d) The speed of propagation of the wave

  • A sinusoidal wave is traveling on a string with speed 28.0 cm/s. The displacement of the...

    A sinusoidal wave is traveling on a string with speed 28.0 cm/s. The displacement of the particles of the string at x = 8.3 cm is found to vary with time according to the equation y = (1.3 cm) sin[1.6 - (5.4 s-1)t]. The linear density of the string is 6.4 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form y(x,t) = ym sin(kx - ωt), what are...

  • The displacement of a transverse traveling wave on a string under tension is described by: D(x,...

    The displacement of a transverse traveling wave on a string under tension is described by: D(x, t) = (2.0 cm) .sin((12.57 rad/m)x + (638 rad/s)t + /2] The linear density of the string is 5.00 g/m. 1. What is the tension in the string? 2. What is the maximal speed of a point on the string? String 2 3. The original string (String 1) is tied to a second string with String 1 a linear density of 12 g/m, as...

  • The displacement of a transverse traveling wave on a string under tension is described by: D(x,...

    The displacement of a transverse traveling wave on a string under tension is described by: D(x, t) = (2.0 cm) sin((12.57 rad/m)x+ (638 rad/s)t + T/2] The linear density of the string is 5.00 g/m. 1. What is the tension in the string? 2. What is the maximal speed of a point on the string? String 2 3. The original string (String 1) is tied to a second string with String 1 a linear density of 12 g/m, as shown...

  • Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction...

    Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t 0; the y intercept is 4.0 cm. The string tension is 2.1 N, and its linear density is 21 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave. (e) Find the maximum transverse speed of a particle...

  • A string is stretched to a tension of 100 N, and has a linear density of...

    A string is stretched to a tension of 100 N, and has a linear density of 0.025 kg/m. An input disturbance causing a sinusoidal wave has a frequency of 150 Hz, with an amplitude of 5 cm. Determine the speed of the wave. Determine the wavelength. Write down the equation describing the displacement of the string as a function of the position and time.

  • (35. A sinusoidal wave on a string is described by the wave M function y =...

    (35. A sinusoidal wave on a string is described by the wave M function y = 0.15 sin (0.80x – 501) where x and y are in meters and t is in seconds. The mass per unit length of this string is 12.0 g/m. Deter- mine (a) the speed of the wave, (b) the wavelength, (c) the frequency, and (d) the power transmitted by the wave.

  • 35. A sinusoidal wave on a string is described by the wave M function y =...

    35. A sinusoidal wave on a string is described by the wave M function y = 0.15 sin (0.80x - 501) where x and y are in meters and t is in seconds. The mass per unit length of this string is 12.0 g/m. Deter- mine (a) the speed of the wave, (b) the wavelength, (c) the frequency, and (d) the power transmitted by the wave.

  • By wiggling one end, a sinusoidal wave is made to travel along a stretched string that...

    By wiggling one end, a sinusoidal wave is made to travel along a stretched string that has a mass per unit length of 22.0 g/m. The wave may be described by the wave function y 0.20 sin (0.90x-42) where x and y are in meters and t s in seconds. 1. (a) Determine the speed of the wave. Is the wave moving in the +x direction or the -x direction? b) What is the tension in the stretched string? (c)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT