Question

A puck on a horizontal, frictionless surface is attached to a string that passes through a...

A puck on a horizontal, frictionless surface is attached to a string that passes through a hole in the surface, as shown in the figure(Figure 1). As the puck rotates about the hole, the string is pulled downward, bringing the puck closer to the hole.


a.) During this process, the puck's linear speed increases because _____. Explain.

b.) During this process, the puck's angular speed increases because _____. Explain.

c.) During this process, the puck's angular momentum remains the same because _____. Explain.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

n.g on the puck, so angd re mains Canstoat Be cause linea moetw Lm linear spee d asil) incrcax b] As strded above, the ang«Ja.r momentum op the puck 1h5 moment Jyert) a abod the hole Beca«se angola/g moro entu r th adt pucis aoglar speed il incase no mentr the puk l sta the some because there 1.5 no torque r it

Add a comment
Know the answer?
Add Answer to:
A puck on a horizontal, frictionless surface is attached to a string that passes through a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • During this process, does the puck's linear speed increase, decrease, or remain the same? A puck...

    During this process, does the puck's linear speed increase, decrease, or remain the same? A puck on a horizontal, frictionless surface is attached to a string that passes through a hole in the surface, as shown in the figure(Figure 1). As the puck rotates about the hole, the string is pulled downward, bringing the puck closer to the hole. O increases O decreases O remains the same Submit Request Answer Part B Complete previous part(s) Part During this process, does...

  • A puck of mass m on a horizontal, frictionless table is connected to a string that...

    A puck of mass m on a horizontal, frictionless table is connected to a string that passes through a small hole in the table. The puck is set into circular motion of radius R, at which time its speed is vi. If the string is pulled from the bottom so that the radius of the circular path is decreased to r, what is the expression for the final speed vf of the puck?

  • A puck of mass m = 46.0 g is attached to a taut cord passing through...

    A puck of mass m = 46.0 g is attached to a taut cord passing through a small hole in a frictionless, horizontal surface (see figure below). The puck is initially orbiting with speed circle of radius -0.310 m. The cord is then slowly pulled from below, decreasing the radius of the circle tor 0.140 m. - 1.60 m/s in a (a) What is the puck's speed at the smaller radius? m/s (b) Find the tension in the cord at...

  • A puck of mass m = 53.0 g is attached to a taut cord passing through...

    A puck of mass m = 53.0 g is attached to a taut cord passing through a small hole in a frictionless, horizontal surface (see figure below). The puck is initially orbiting with speed V = 1.40 m/s in a circle of radius 1 0.320 m. The cord is then slowly pulled from below, decreasing the radius of the circle to r= 0.140 m. (a) What is the puck's speed at the smaller radius? m/s (b) Find the tension in...

  • A puck on a frictionless air-hockey table has a mass of 0.0500kg and is attached to...

    A puck on a frictionless air-hockey table has a mass of 0.0500kg and is attached to a cord passing downward through a hole in the table. The puck is originally revolving at a distance of 0.300m from the hole with an angular speed of 2.50 rad/s. the cord is then pulled from below l, shortening the puck' s radius to 0.100m. what is the buck's new angular speed?

  • A small block on a frictionless horizontal surface has a mass of 2.50×10−2 . It is attached to a massless cord passing...

    A small block on a frictionless horizontal surface has a mass of 2.50×10−2 . It is attached to a massless cord passing through a hole in the surface. (See the figure below .) The block is originally revolving at a distance of 0.300 from the hole with an angular speed of 1.75 . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 . You may treat the block as...

  • A small block on a frictionless, horizontal surface has a mass of 0.0260 kg. It is attached to a massless cord pass...

    A small block on a frictionless, horizontal surface has a mass of 0.0260 kg. It is attached to a massless cord passing through a hole in the surface (see figure below). The block is originally revolving at a distance of 0.320 m from the hole with an angular speed of 1.90rad/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.160 m. Model the block as a particle.(a) Is angular...

  • A small block on a frictionless horizontal surface has a mass of 0.0280 kg . It is attached to a massless cord passing...

    A small block on a frictionless horizontal surface has a mass of 0.0280 kg . It is attached to a massless cord passing through a hole in the surface. (See the figure below (Figure 1) .) The block is originally revolving at a distance of 0.310 m from the hole with an angular speed of 1.80 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.115 m ....

  • 6. A small block on a frictionless, horizontal surface has a mass "m". It is attached...

    6. A small block on a frictionless, horizontal surface has a mass "m". It is attached to a massless cord passing through a hole in the surface. The block is originally revolving at a distance "r" with an angular speed "o". The cord is pulled below, shortening the radius to half it value. Given [r, m, ω.], Determine: a. The final angular speed. b. The amount of work done in pulling the cord.

  • A mass of 0.875 kg, on a frictionless table, is attached to a string which passes...

    A mass of 0.875 kg, on a frictionless table, is attached to a string which passes through a hole in the table. The hole is at the center of a horizontal circle in which the mass moves with constant speed. The radius of the circle is 0.520 m and the speed of the mass is 17.0 m/s. It is found that drawing the string down through the hole and reducing the radius of the circle to 0.370 m has the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT