Question

Problem 2. On a horizontal, frictionless table, an open-topped 5.50 kg box is attached to an ideal horizontal spring having f
0 0
Add a comment Improve this question Transcribed image text
Answer #1

boksione Ans] Combined mass of (box + block) = M = (5.5+3.20) Kg mboxt monk M=8.7kg. spring constant = K = 3500 initial ampliEnergy is Kinetic, which is equal to total I potential Energy at extreme position Kinetic Energy Before the stone is removed

Add a comment
Know the answer?
Add Answer to:
Problem 2. On a horizontal, frictionless table, an open-topped 5.50 kg box is attached to an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A horizontal mass-spring system consists of a 2 kg mass moving on a frictionless surface attached...

    A horizontal mass-spring system consists of a 2 kg mass moving on a frictionless surface attached to a spring. The other end of the spring is attached to a wall. The mass is pulled and released. The resultant simple harmonic motion has a period of 5 s and it is observed that the maximum velocity of the mass is 0.3 m/s. a) Calculate the spring constant of the spring. (b) Calculate the amplitude of the motion. Sometime later, when the...

  • A 5.00 kg object on a frictionless horizontal surface is attached to one end of a...

    A 5.00 kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant of k = 700 N/m. The spring is stretched 8.00 cm from equilibrium and released. What are (a)the frequency of the motion, (b)the period, (c)the amplitude, (d)the maximum speed, (e)the maximum acceleration?

  • A 4.50-kg object on a frictionless horizontal surface is attached to one end of a horizontal...

    A 4.50-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 840 N/m. The spring is stretched 7.00 cm from equilibrium and released. (a) What is the frequency of the motion? Hz (b) What is the period of the motion? s (c) What is the amplitude of the motion? cm (d) What is the maximum speed of the motion? m/s (e) What is the maximum acceleration of...

  • A mass of 9 kg is placed on a horizontal frictionless surface and attached to a...

    A mass of 9 kg is placed on a horizontal frictionless surface and attached to a spring. The mass is compressed 0.69 meters on the spring from equilibrium and held still. It is then released and it travels across the horizontal surface, around a frictionless quarter circular ramp, and it is launched into the air vertically and reaches a maximum height of 6 meters above the ground. The same mass is then attached to the same spring and hung vertically...

  • Problem 2 A 0.175-kg glider on a horizontal, frictionless air track is attached to a fixed...

    Problem 2 A 0.175-kg glider on a horizontal, frictionless air track is attached to a fixed ideal spring with spring constant 155 N/m. When the glider is 3.00 cm from its equilibrium point, it is moving at 0.815 m/s. (a) Find the frequency of the oscillations. (b) Find the amplitude of the motion. (c) Find the maximum speed of the glider. Hint: For (b) and (c), use the energy conservation.

  • A 4.8 kg block attached to a spring executes simple harmonic motion on a frictionless horizontal...

    A 4.8 kg block attached to a spring executes simple harmonic motion on a frictionless horizontal surface.The amplitude is 0.90 m, the maximum acceleration is 2.9 m/s^2. The force constant of the spring is closest to?

  • A 15.0 kg block is attached to a very light horizontal spring of force constant 375...

    A 15.0 kg block is attached to a very light horizontal spring of force constant 375 N/m and is resting on a frictionless horizontal table. (See the figure below (Figure 1).) Suddenly it is struck by a 3.00 kg stone traveling horizontally at 8.00 m/s to the right, whereupon the stone rebounds at 2.00 m/s horizontally to the left. Find the maximum distance that the block will compress the spring after the collision. x=...?meter

  • A 1.25 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to...

    A 1.25 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to a horizontal spring whose spring constant is 118 N/m. The block is shoved parallel to the spring axis and is given an initial speed of 10.2 m/s, while the spring is initially unstrained. What is the amplitude of the resulting simple harmonic motion?

  • A mass m = 2.35 kg is at the end of a horizontal spring on a frictionless horizontal surface

    A mass m = 2.35 kg is at the end of a horizontal spring on a frictionless horizontal surface. The mass is oscillating with an amplitude A = 2.5 cm and a frequency f = 1.55 Hz. Part (a) Write an equation for the spring constant kPart (b) Calculate the spring constant k, in Newtons per meter Part (c) Write an equation for the total mechanical energy, E. of the motion. Your expression should be in terms of the variables in the...

  • A 2.29 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to...

    A 2.29 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to a horizontal spring whose spring constant is 133 N/m. The block is shoved parallel to the spring axis and is given an initial speed of 11.5 m/s, while the spring is initially unstrained. What is the amplitude of the resulting simple harmonic motion? Please walk me through it.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT