Question

Physics 262 Fall 2019 HW #12 1. A series circuit contains a 100.0-resistor, a 0.450-H inductor, a 0.360-ul capacitor, and a t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

resonant frequency W2= - wc ic L=0.454 C=0.36x100E - 10:45 X0:3670 W z 2484-5 reads IZE -30 =0-3A

Add a comment
Know the answer?
Add Answer to:
Physics 262 Fall 2019 HW #12 1. A series circuit contains a 100.0-resistor, a 0.450-H inductor,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • . A 250-ohm resistor, a 0.450 H inductor, and a 6.45 F capacitor are connected in...

    . A 250-ohm resistor, a 0.450 H inductor, and a 6.45 F capacitor are connected in series across an emf with a 36.0 volt amplitude and an angular frequency of 260 rad/s. a. What is the impedance? b. What is the current amplitude? c. What is the phase angle between the voltage and current? Does the voltage lag or lead? d. What are the voltage amplitudes across the resistor, inductor and capacitor individually? e. What is the power? f. What...

  • a. b. C. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are...

    a. b. C. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are connected in series across an emf with a 36.0 volt amplitude and an angular frequency of 260 rad/s. What is the impedance? What is the current amplitude? What is the phase angle between the voltage and current? Does the voltage lag or lead? What are the voltage amplitudes across the resistor, inductor and capacitor individually? What is the power? f. What is the resonant...

  • #3. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are connected in...

    #3. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are connected in series across an emf with a 36.0 volt amplitude and an angular frequency of 260 rad/s. a. What is the impedance? b. What is the current amplitude? c. What is the phase angle between the voltage and current? Does the voltage lag or lead? d. What are the voltage amplitudes across the resistor, inductor and capacitor individually? e. What is the power? f. What...

  • Rev You have a 250- resistor and a 0.450-H inductor. Suppose you take the resistor and...

    Rev You have a 250- resistor and a 0.450-H inductor. Suppose you take the resistor and inductor and make a series circut with a voltage source that has a votage amplitude of 35.0 V and an angular frequency of 230 rad/s Part A What is the impedance of the circult? 180 AEDO ? Submit Part 8 What is the current amplitude? %AED RO? Submit Request Answer You have a 250-2 resistor and a 0.450-H inductor. Suppose you take the resistor...

  • Exercise 31 A series ac circuit contains a 350 - resistor, a 20.0 - mH inductor,...

    Exercise 31 A series ac circuit contains a 350 - resistor, a 20.0 - mH inductor, a 2.90 - uF capacitor, and an ac power source of voltage amplitude 45.0 V operating at an angular frequency of 360 rad/s. Part A What is the power factor of this circuit? ANSWER: cos - Part B Find the average power delivered to the entire circuit ANSWER: P- w Part C What is the average power delivered to the resistor, to the capacitor,...

  • You have a 250-Ω resistor and a 0.360-H inductor. Suppose you take the resistor and inductor...

    You have a 250-Ω resistor and a 0.360-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 31.0 V and an angular frequency of 200 rad/s. Q]Construct the phasor diagram. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. Include: 1) Vr (Resistor Voltage Phasor), 2) Vl (Inductor Voltage Phasor) and 3) I (Current Phasor)

  • 4) An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an A...

    4) An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an AC voltage source with an RMS voltage of 59 volts. At half the resonant frequency, the phase angle is -35 degrees and the inductive reactance is 46 Ohms. What is the average dissipated power at twice the resonant frequency in Watts?

  • An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an AC v...

    An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an AC voltage source with an RMS voltage of 74 volts. At half the resonant frequency, the phase angle is -25 degrees and the inductive reactance is 47 Ohms. What is the average dissipated power at twice the resonant frequency in Watts?

  • A circuit has an ac voltage source and a resistor and capacitor connected in series. There is no inductor.

     A circuit has an ac voltage source and a resistor and capacitor connected in series. There is no inductor. The ac voltage source has voltage amplitude 0.900 kV and angular frequency w = 20.0 rad/s. The voltage amplitude across the capacitor is 0.500 kV. The resistor has resistance R= 0.300 kΩ. Part A What is the voltage amplitude across the resistor? Part B What is the capacitance C of the capacitor? Part C Does the source voltage lag or lead the current? Part D What is the average...

  • 1) An RLC series circuit has a 40.0 ? resistor, a 3.00 mH inductor, and a...

    1) An RLC series circuit has a 40.0 ? resistor, a 3.00 mH inductor, and a 5.00 ?F capacitor a. Find the circuit's impedance at 60.0 Hz and 10.0 kHz b. If the voltage source has Vrms 120 V, what is Irms at each frequency? c. Find the resonant frequency d. Calculate Irms at resonant frequency, if the voltage source is Vrms-120v e. Calculate the power factor and phase angle at 60.0 Hz

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT