Question

The acoustical system shown in the figure below is driven by a speaker emitting sound of frequency 781 Hz. (Use v 343 m/s.) S

0 0
Add a comment Improve this question Transcribed image text
Answer #1

In Interference path difference beth two consicutine maxima & minima l ² So minimum path length increase in upper u-shape tub

Add a comment
Know the answer?
Add Answer to:
The acoustical system shown in the figure below is driven by a speaker emitting sound of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The acoustical system shown in the figure below is driven by a speaker emitting sound of...

    The acoustical system shown in the figure below is driven by a speaker emitting sound of frequency 716 Hz. (Use v = 343 m/s.) A rectangular tube where the top section is comprised of a sliding U-shaped part has an opening at the center of the left and right sides of the tube. A speaker is pointed at the opening on the left side and shows sound waves entering the tube going through both paths towards the right opening. A...

  • 8. The acoustical system shown in the figure is driven by a speaker emitting sound of...

    8. The acoustical system shown in the figure is driven by a speaker emitting sound of frequency 620 Hz. Take Vair = 340 m/s. (a) If the upper U-shaped tube is 1.10 m long and the lower U- shaped tube is 1.37 m long, can the person in the picture hear the sound? Why? (b) To change the status (either from louder to softer or from softer to louder), how much the length of the lower U- shaped tube needed...

  • Two speakers create identical 288 Hz sound waves. A person is 1.47 m from Speaker 1....

    Two speakers create identical 288 Hz sound waves. A person is 1.47 m from Speaker 1. What is the minimum distance to Speaker 2 for there to be constructive interference at that spot? Two speakers create identical 288 Hz sound waves. A person is 1.47 m from Speaker 1. What is the MINIMUM distance to Speaker 2 for there to be constructive interference at that spot? (Hint: v- Af 343 m/s) (Unit = m) Enter

  • Two speakers create identical 240 Hz sound waves. A person is 1.47 m from speaker 1....

    Two speakers create identical 240 Hz sound waves. A person is 1.47 m from speaker 1. What is the minimum distance to speaker 2 for there to be destructive interference at that spot? •I have asked this question before and got 2.18 m as the answer but it appears that is not the right answer Two speakers create identical 240 Hz sound waves. A person is 1.47 m from Speaker 1. What is the MINIMUM distance to Speaker 2 for...

  • 1. (10 points) Two identical speakers are continuously emitting sound waves uniformly in all directions at...

    1. (10 points) Two identical speakers are continuously emitting sound waves uniformly in all directions at 440 Hz. The speed of sound is 344 m/s. Point P is a distance of r = 3.13 m away from speaker 1 and r2 = 4.30m from speaker 2: i. What is the phase difference between the waves at Point P? ii. Is this a point of constructive interference, destructive interference, or something in between? Explain.

  • Two loudspeakers are placed above and below each other, as in the figure below, and driven...

    Two loudspeakers are placed above and below each other, as in the figure below, and driven by the same source at a frequency of 4.40 ✕ 102 Hz. An observer is in front of the speakers (to the right) at point O, at the same distance from each speaker. What minimum vertical distance upward should the top speaker be moved to create destructive interference at point O? (Let h = 2.62 m and use v = 343 m/s.)

  • Two loudspeakers are placed above and below each other, as in the figure below, and driven...

    Two loudspeakers are placed above and below each other, as in the figure below, and driven by the same source at a frequency of 5.00 x 102 Hz. An observer is in front of the speakers (to the right) at point o, at the same distance from each speaker. What minimum vertical distance upward should the top speaker be moved to create destructive interference at point O? (Let h = 2.76 m and use v = 343 m/s.) 8.00 m

  • 1. (10 points) Two identical speakers are continuously emitting sound waves uniformly in all directions at...

    1. (10 points) Two identical speakers are continuously emitting sound waves uniformly in all directions at 440 Hz. The speed of sound is 344 m/s. Point P is a distance of rı= 3.13 m away from speaker 1 and r2 = 4.30 m from speaker 2: i. What is the phase difference between the waves at Point P? ii. Is this a point of constructive interference, destructive interference, or something in between? Explain. 2. (10 points) A real (non-ideal) double-slit...

  • Two loudspeakers are mounted on a rack, one h = 3.42 m above the other. Exactly...

    Two loudspeakers are mounted on a rack, one h = 3.42 m above the other. Exactly 8.00 meters to the right of the midpoint, a listener rests at point o. Point O is equally distant from each loudspeaker. 8.00 m The loudspeakers are driven by the same tone generator and vibrate in phase at 510 Hz. It is possible to create a condition of destructive interference at Point O by changing one or both of the path lengths (r, and...

  • My Nules ASR Tour Teacher Two loudspeakers are mounted on a rack, one h = 3.42...

    My Nules ASR Tour Teacher Two loudspeakers are mounted on a rack, one h = 3.42 m above the other. Exactly 8.00 meters to the right of the midpoint, a listener rests at point o. Point O is equally distant from each loudspeaker. 8.00 m The loudspeakers are driven by the same tone generator and vibrate in phase at 510 Hz. It is possible to create a condition of destructive interference at Point O by changing one or both of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT