Question

34. GP An oversized yo-yo is made from two identical solid disks each of mass M 2.00 kg and radius R - 10.0 cm. The two disks are joined by a solid cylinder 01 radius γ 4.00 cm and mass m 1.00 kg as in Fig ure P8.34. Take the center of the cylinder as the axis of the system, with positive torques directed to the left along this axis. All torques and angular variables are to be calculated around this axis. Light string is wrapped around the cylinder, and the system is then allowed to drop from rest. (a) What is the moment of inertia of the system? Give a symbolic answer. (b) What torque does gravity exert on the system with respect to the given axis? (c) Take downward as the negative coordinate direction. As depicted in Figure P8.34, is the torque exerted by the tension positive or negative? Is the angular acceleration positive or negative? What about the translational acceleration? (d) Write an equation for the angular acceleration α in terms of the transla- tional acceleration a and radius r. (Watch the sign!) (e) Write Newtons second law for the system in terms of m, M, a, T, and g. (f) Write Newtons second law for rotation in terms of 1, α, T, and . (g) Eliminate α from the rotational second law with the expression found inpart (d) and find a symbolic expression for the accel- eration a in terms of m, M, g, rand R. (h) What is the numeric value for the systems acceleration? (i) What is the tension in the string? (j) How long does it take the system to drop 1.00 m from rest?How to do problem number 34 from chapter 8? This problem is from College Physics 9th edition textbook.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

め10) IS ALSO +ve eAs DoWN WARD e )

Add a comment
Know the answer?
Add Answer to:
How to do problem number 34 from chapter 8? This problem is from College Physics 9th...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A string is wrapped around a uniform solid cylinder of radius r, as shown in the figure (Figure 1) . The cylinder can r...

    A string is wrapped around a uniform solid cylinder of radius r, as shown in the figure (Figure 1) . The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m. Note that the positive y direction is downward and counterclockwise torques are positive. Find the magnitude α of the angular acceleration of the cylinder as the block descends. Express your answer in terms...

  • torque on a cylinder Cylinder drop (2) A uniform cylinder of mass m - 2 kg....

    torque on a cylinder Cylinder drop (2) A uniform cylinder of mass m - 2 kg. radius r = 0. 1 m (and I = 1/2mr^2) has a massless, frictionless string wrapped around the outside, and is subsequently dropped from rest. The cylinder will fall and the string will unwind like a yo-yo. The string will haw some tension T during this process. Find the net force acting on the cylinder (in terms of T if necessary). Find the net...

  • A string is wrapped around a uniform solid cylinder of radius , r as shown in the figure (Figure 1) . The cylinder can...

    A string is wrapped around a uniform solid cylinder of radius , r as shown in the figure (Figure 1) . The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m. Note that the positive y direction is downward and counterclockwise torques are positive. Find the magnitudeof the angular acceleration of the cylinder as the block descends. Express your answer in terms of...

  • A string is wrapped around a uniform solid cylinder of radius , r as shown in the figure (Figure 1) . The cylinder can...

    A string is wrapped around a uniform solid cylinder of radius , r as shown in the figure (Figure 1) . The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m. Note that the positive y direction is downward and counterclockwise torques are positive. Find the magnitudeof the angular acceleration of the cylinder as the block descends. Express your answer in terms of...

  • A bucket of mass m is hanging from the free end of a rope whose other...

    A bucket of mass m is hanging from the free end of a rope whose other end is wrapped around a drum (radius R, mass M) that can rotate with negligible friction about a stationary horizontal axis. The drum is not a uniform cylinder and has unknown moment of inertia. When you release the bucket from rest, you find that it has a downward acceleration of magnitude (a). What is the tension in the cable between the drum and the...

  • 4:36 # $24 OKO 34% A solid cylinder with mass m and radius r rolls without...

    4:36 # $24 OKO 34% A solid cylinder with mass m and radius r rolls without slipping down an incline that makes a 3B" with the horizontal What is the moment of inertia of the solid cylinder about the center of mass? Incorrect I = 2/5.mp Incorrect I = 1/12 + m2 Correct: I = mr/2 Incorrect T = mr2 You are correct. Your receipt no. is 158-399 Previous Tries What form does Newton's 2nd Law take in this system...

  • I need a step by step on 1 and 2 so I can teach myself. 1....

    I need a step by step on 1 and 2 so I can teach myself. 1. A solid, uniform sphere with a mass of 2.0 kg is rolling from rest down an incline plane from the top of the plane. The incline plane makes an angle of 20° with the horizontal and has a height of 2.0 m. At the bottom of the incline plane, the surface levels out to a frictionless horizontal surface. A spring with a spring constant...

  • front view side view FT 1 R Ms Pulling the yo-yo [9pt] A non-intuitive motion that...

    front view side view FT 1 R Ms Pulling the yo-yo [9pt] A non-intuitive motion that combines translation and rotation is pulling a wheel with a string wrapped around it, as shown in the figure above. Depending on what angle the string is pulled, you can obtain three kinds of motion: the yo-yo accelerating in the direction of the applied tension force and winding up, the yo-yo accelerating in the opposite direction of tension and unwinding, and the yo-yo sliding...

  • front view side view FT R. ول Pulling the yo-yo [9pt] A non-intuitive motion that combines...

    front view side view FT R. ول Pulling the yo-yo [9pt] A non-intuitive motion that combines translation and rotation is pulling a wheel with a string wrapped around it, as shown in the figure above. Depending on what angle the string is pulled, you can obtain three kinds of motion: the yo-yo accelerating in the direction of the applied tension force and winding up, the yo-yo accelerating in the opposite direction of tension and unwinding, and the yo-yo sliding at...

  • Learning Goal: To understand and apply the formula τ=Iα to rigid objects rotating about a fixed axis. To fin...

    Learning Goal: To understand and apply the formula τ=Iα to rigid objects rotating about a fixed axis. To find the acceleration a of a particle of mass m, we use Newton's second law: F⃗ net=ma⃗ , where F⃗ net is the net force acting on the particle. To find the angular acceleration α of a rigid object rotating about a fixed axis, we can use a similar formula: τnet=Iα, where τnet=∑τ is the net torque acting on the object and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT