Question

Use the approximation that for each time step. A spring with a relaxed length of 25...

Use the approximation that for each time step. A spring with a relaxed length of 25 cm and a stiffness of 16 N/m stands vertically on a table. A block of mass 78 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 29.5 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the position and momentum of the block at a time 0.2 s after you release the block. (Assume the direction is upward. Express your answers in vector form.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Use the approximation that for each time step. A spring with a relaxed length of 25...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use the approximation that v→avg=p→f/m for each time step. A spring with a relaxed length of...

    Use the approximation that v→avg=p→f/m for each time step. A spring with a relaxed length of 25 cm and a stiffness of 17 N/m stands vertically on a table. A block of mass 75 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 30.9 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the position...

  • Use the approximation that Vavg lm for each time step A spring with a relaxed length...

    Use the approximation that Vavg lm for each time step A spring with a relaxed length of 25 cm and a stiffness of 20 N/m stands vertically on a table. A block of mass 69 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 29.7 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the...

  • Use the approximation that v→avg=p→f/m for each time step. A spring with a relaxed length of...

    Use the approximation that v→avg=p→f/m for each time step. A spring with a relaxed length of 25 cm and a stiffness of 16 N/m stands vertically on a table. A block of mass 89 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 30.3 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the position...

  • Use the approximation that v→avg=p→f/m for each time step. A spring with a relaxed length of...

    Use the approximation that v→avg=p→f/m for each time step. A spring with a relaxed length of 25 cm and a stiffness of 16 N/m stands vertically on a table. A block of mass 89 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 30.3 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the position...

  • Use the approximation that →avg-pfhn for each time step. A spring with a relaxed length of...

    Use the approximation that →avg-pfhn for each time step. A spring with a relaxed length of 25 cm and a stiffness of 20 N/m stands vertically on a table. A block of mass 63 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 31.6 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the position...

  • A spring with a relaxed length of 25 cm and a stiffness of 15 N/m stands...

    A spring with a relaxed length of 25 cm and a stiffness of 15 N/m stands vertically on a table. A block of mass 86 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 29.9 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the position and momentum of the block at a time 0.2...

  • A spring with a relaxed length of 25 cm and a stiffness of 13 N/m stands...

    A spring with a relaxed length of 25 cm and a stiffness of 13 N/m stands vertically on a table. A block of mass 73 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 31.7 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s, predict the position and momentum of the block at a time 0.2...

  • Problem 2.42 Use the approximation that V avg Pm for each time step A spring with...

    Problem 2.42 Use the approximation that V avg Pm for each time step A spring with a relaxed length of 25 cm and a stiffness of 17 N/m stands vertically on a table. A block of mass 72 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 28.9 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1...

  • Problem 2.42 (Multistep) Use the approximation that Va for each time step A spring with a...

    Problem 2.42 (Multistep) Use the approximation that Va for each time step A spring with a relaxed length of 25 cm and a stiffness of 12 N/m stands vertically on a table. A block of mass 67 g is attached to the top of the spring. You pull the block upward, stretching the spring until its length is now 29.1 cm, hold the block at rest for a moment, and then release it. Using a time step of 0.1 s,...

  • A block is attached to the top of a spring that stands vertically on a table....

    A block is attached to the top of a spring that stands vertically on a table. The spring stiffness is 57 N/m, its relaxed length is 31 cm, and the mass of the block is 305 g. The block is oscillating up and down as the spring stretches and compresses. At a particular time you observe that the velocity of the block is <0, 0.0877, 0> m/s and the position of the block is <0, 0.0798, 0> m relative to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT