Question

and its linear acceleration is Questions 16-17: Block A ma = 5.00 kg, and block B has a mass me = 5.00 kg underwent a head of
0 0
Add a comment Improve this question Transcribed image text
Answer #1

16. MA = 5 kg , MB = 5 kg UA = +5m/s, 48=-5 m/s use conservation of momentum MAUA + MB Up = (MATMB) 5x5 - 5x5 = lou r=0 m/s 1

Add a comment
Know the answer?
Add Answer to:
and its linear acceleration is Questions 16-17: Block A ma = 5.00 kg, and block B...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Questions 13-15: At t=0 the current to a dc electric motor is reversed, resulting in an...

    Questions 13-15: At t=0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by e(t) = (27 rad/s)t - (1 rad/s°) (10 points) 13) At what time is the angular velocity of the motor shaft zero? 14) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity. 15) The radius of the shaft is 0.1m. Calculate the linear speed of the shaft at t=1s and...

  • A 2-kg block moving in the positive x direction with a speed of 5.0 m/s collides...

    A 2-kg block moving in the positive x direction with a speed of 5.0 m/s collides with a 3-kg block moving in the same direction with a speed of 2.0 m/s. After the collision the 3-kg block moves at 4.2 m/s. Find the velocity of the 2-kg block after the collision. Is the collision elastic or inelastic? Justify your answer.

  • Block A of mass mA is moving horizontally with speed Va along a frictionless surface

     Block A of mass mA is moving horizontally with speed Va along a frictionless surface. It collides elastically with block B of mass mB that is initially at rest. After the collision block B enters a rough surface at x =0 with a coefficient of kinetic friction that increases linearly with distance μ(x) = bx for 0 ≤ x ≤ d, where b is a positive constant. At x=d block B collides with an unstretched spring with spring constant k...

  • 8. (9 pts.) A 4.00-kg ball, moving to the right at a velocity of +2.00 mis...

    8. (9 pts.) A 4.00-kg ball, moving to the right at a velocity of +2.00 mis on a frictionless table, collides head-on with a stationary 6.50-kg ball. Find the final velocities of the balls if the collision is completely inelastic (the balls stick together). 9. (12 pts.) A 2.5-kg ball and a 5.0-kg ball have an elastic collision. Before the collision, the 2.5-kg ball was at rest and the other ball had a speed of 3.5 m/s. (a) What is...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • An object (A) of mass mAA = 27.5 kg is moving in a direction that makes...

    An object (A) of mass mAA = 27.5 kg is moving in a direction that makes angle of 56° south of east with a speed vAA = 5.00 m/s, while object (B) of mass mBB = 17.5 kg is moving due north with a speed vBB = 8.00 m/s. The two objects collide and stick together in a completely inelastic collision. Find the magnitude of the final velocity of the two-object system after the collision.

  • Block A of mass 2.00 kg and block B of mass 3.00 kg slide on a...

    Block A of mass 2.00 kg and block B of mass 3.00 kg slide on a frictionless surface toward one another and collide. Before the collision, block A moves east with a speed of 3.00 m/s, block B moves south with a speed of 1.50 m/s. After the collision, block A moves 12 degrees west of south with a speed of 0.500 m/s. The two blocks do NOT stick together after the collision. (a) What is the magnitude and direction...

  • One object is moving and one object is at rest. The two objects then collide in...

    One object is moving and one object is at rest. The two objects then collide in a dimensional, completely inelastic collision. So the two objects stick together after the collision and move off with a common velocity. Momentum of the two-object system is conserved. The masses of the two objects are 5.00 kg and 8.50 kg, respectively. The speed of the moving object masses 5.00 kg before the collision is 22.5 m/sec. Find the final speed of the two-object system...

  • horizontal ) In the figure, a 5.00-kg block is moving at 5.00 m/s along a n...

    horizontal ) In the figure, a 5.00-kg block is moving at 5.00 m/s along a n ideal massless spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of 0.68 m. What is the speed of the block when it has moved so that th spring is compressed to only one-half of the maximum distance? 5.00 kg 5.00 m/s 2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT