Question

Chapter 15, Problem 034 GO In the figure, block 2 of mass 2.30 kg Oscillates on the end of a soring in SHM with a period of 2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

T= 20.00ms, o = 25 t= 5.00ms and 3 = (0.500 cm) cos (cot + 1/2) therefore at t = 5:00ms x = -5.500cm that is at extreme posit

Add a comment
Know the answer?
Add Answer to:
Chapter 15, Problem 034 GO In the figure, block 2 of mass 2.30 kg Oscillates on...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, block 2 of mass 2.60 kg oscillates on the end of a spring...

    In the figure, block 2 of mass 2.60 kg oscillates on the end of a spring in SHM with a period of 24.00 ms. The position of the block is given by x = (1.60 cm) cos(wt + pi/2). Block 1 of mass 5.20 kg slides toward block 2 with a velocity of magnitude 7.20 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 6.00 ms. (The duration of the collision...

  • In the figure, block 2 of mass 2.60 kg oscillates on the end ofa spring...

    In the figure, block 2 of mass 2.60 kg oscillates on the end of a spring in SHM with a period of 26.00 ms. The position of the block is given by x = (1.50 cm) cos(ωt + π/2). Block 1 of mass 5.20 kg slides toward block 2 with a velocity of magnitude 3.00 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t= 6.50 ms. (The duration of the collision is...

  • Question 12 In the figure, block 2 of mass 2.20 kg oscillates on the end of...

    Question 12 In the figure, block 2 of mass 2.20 kg oscillates on the end of a spring in SHM with a period of 14.00 ms. The position of the block is given by x = (1.40 cm) cos(wt + x/2). Block 1 of mass 4.40 kg slides toward block 2 with a velocity of magnitude 8.40 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 3.50 ms. (The duration of...

  • Figure 15-34 shows block 1 of mass 0.200 kg sliding to the right over a frictionless elevated sur...

    Figure 15-34 shows block 1 of mass 0.200 kg sliding to the right over a frictionless elevated surface at a speed of 8.00 m/s. The block undergoes an elastie collision with stationary block 2, which is attached to a spring of spring constant 1208.5 N/m. (Assume that the spring does not affect the collision.) After the collision, block 2 oscillates in SHM with a period of 0.140 s, and block 1 slides off the opposite end of the elevated sturface,...

  • The figure shows block 1 of mass 0.265 kg sliding to the right over a frictionless...

    The figure shows block 1 of mass 0.265 kg sliding to the right over a frictionless elevated surface at a speed of 8.85 m/s. The block undergoes an elastic collision with stationary block 2, which is attached to a spring of spring constant 1166 N/m. (Assume that the spring does not affect the collision.) After the collision, block 2 oscillates in SHM with a period of 0.135 s, and block 1 slides off the opposite end of the elevated surface,...

  • Chapter 09, Problem 059 In the figure, block 1 (mass 3.7 kg) is moving rightward at...

    Chapter 09, Problem 059 In the figure, block 1 (mass 3.7 kg) is moving rightward at 6.5 ms and block 2 (mass 4.1 kg) is moving rightward at 1.0 m/s. The surface is frictionless, and a spring with a spring constant of k=860 N/m is fixed to block 2. When the blocks collide, the compression of the spring is maximum at the instant the blocks have the same velocity. Find the maximum compression. irono Number Units The number of significant...

  • A long, uniform rod of mass 20.00 kg is pivoted at its top end. It is...

    A long, uniform rod of mass 20.00 kg is pivoted at its top end. It is lifted a small angle and let go. When it reaches the very bottom of its swing, it is moving with angular speed ?o , and it has collision with a block of mass 3.000 kg that was originally at rest on a frictionless surface. After the collision the rod is seen to continue spinning in the same direction at 17.66 rad/s. As a result...

  • Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on...

    Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 109 N/m. The other end of the spring is foxed to a wall. Block 1 (mass 1.20 kg), traveling at speed v1 - 4.10 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? Number Units

  • 2. | 10 The block B of mass m3 = 2.5 kg is attached to a...

    2. | 10 The block B of mass m3 = 2.5 kg is attached to a spring with spring constant k, and is initially at rest at point A as shown in the diagram. The block is then released and slides inside the curved slot until it collides at location C with a ball S that is hanging by a rope from a fixed location D. After the collision, block B is at rest at location C, and the ball...

  • PRINTER VERSION 4 BACK NEXT Chapter 09, Problem 058 In the figure, block 2 (mass 1.70...

    PRINTER VERSION 4 BACK NEXT Chapter 09, Problem 058 In the figure, block 2 (mass 1.70 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 264 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.70 kg), traveling at speed - 4,30 m/s, colides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT