Question

A patient is ordered to receive sodium supplementation by intravenous infusion of a sodium carbonate solution...

A patient is ordered to receive sodium supplementation by intravenous infusion of a sodium carbonate solution [Na2CO3 , MW=105.989 g/mol]. The patient is ordered to receive 0.8 mEq of Na + ions per hour.

A 750 mL intravenous bag is prepared that contains 27 mL of a 4.2% solution of sodium carbonate. What should be the infusion rate (in units of mL/min) necessary to produce the ordered dose of 0.8 mEq/hr of sodium?

(Note: Consider the total solution volume to be 750 mL. Also assume the sodium carbonate salt completely disassociates in solution. Please do not assume the specifics of this question are exactly clinically relevant due to the variability in this question.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ordered dose of sodium carbonate is 0.8mEq per hour

Available IV bag of 750ml has 4.2 mEq of sodium carbonate

Calculate the flow rate

Using unitary method :

4.2 mEq of sodium carbonate is present in 750ml

Then 1mEq of sodium carbonate is present in 750/4.2 ml

For , 0.8mEq of sodium carbonate we need to take 750/4.2× 0.8

= 142.8 ~ 143ml

Flow rate = total volume/total time

= 143ml/hour

Add a comment
Know the answer?
Add Answer to:
A patient is ordered to receive sodium supplementation by intravenous infusion of a sodium carbonate solution...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A patient is ordered to receive chloride supplementation by intravenous infusion of a sodium chloride solution [Na...

    A patient is ordered to receive chloride supplementation by intravenous infusion of a sodium chloride solution [Na CI, MW-58.44 g/mol). The patient is ordered to receive 0.7 mEq of CI - ions per hour. A 750 mL intravenous bag is prepared that contains 17 mL of a 14.6% solution of sodium chloride. What should be the infusion rate (in units of mL/min) necessary to produce the ordered dose of 0.7 mEq/hr of chloride? (Note: Consider the total solution volume to...

  • A patient is ordered to receive chloride supplementation by intravenous infusion of a sodium chloride solution...

    A patient is ordered to receive chloride supplementation by intravenous infusion of a sodium chloride solution [Na Cl MW-58.44 g/mol]. The patient is ordered to receive 0.4 mEq of Cl - ions per hour. A 1000 mL intravenous bag is prepared that contains 12 mL of a 23.4% solution of sodium chloride. What should be the infusion rate (in units of mL/min) necessary to produce the ordered dose of 0.4 mEq/hr of chloride? (Note: Consider the total solution volume to...

  • A 58 kg patient is in need of intravenous iron supplementation. She was ordered to receive...

    A 58 kg patient is in need of intravenous iron supplementation. She was ordered to receive a single intravenous 7 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 MW-399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 750 mg of stabilized iron sulfate salt in water to produce 20 mL of solution. How many milliequivalents of iron (Fe 3+) will the patient receive as a single dose? Assume the salt...

  • A 67 kg patient is in need of intravenous iron supplementation. She was ordered to receive...

    A 67 kg patient is in need of intravenous iron supplementation. She was ordered to receive a single intravenous 7 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 - MW=399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 875 mg of stabilized iron sulfate salt in water to produce 10 mL of solution. How many milliequivalents of iron (Fe 3+) will the patient receive as a single dose? Assume the...

  • A 71 kg patient is in need of intravenous iron supplementation. He was ordered to receive...

    A 71 kg patient is in need of intravenous iron supplementation. He was ordered to receive a single intravenous 6 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 - MW=399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 800 mg of stabilized iron sulfate salt in water to produce 20 mL of solution. How many milliequivalents of iron (Fe 3+) will the patient receive as a single dose? Assume the...

  • A 58 kg patient is in need of intravenous iron supplementation. She was ordered to receive...

    A 58 kg patient is in need of intravenous iron supplementation. She was ordered to receive a single intravenous 5 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 - MW=399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 975 mg of stabilized iron sulfate salt in water to produce 10 mL of solution. How many milliequivalents of iron (Fe 3+) will the patient receive as a single dose? Assume the...

  • A 67 kg patient is in need of intravenous iron supplementation. She was ordered to receive...

    A 67 kg patient is in need of intravenous iron supplementation. She was ordered to receive a single intravenous 7 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 - MW=399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 875 mg of stabilized iron sulfate salt in water to produce 10 mL of solution. How many milliequivalents of iron (Fe 3+) will the patient receive as a single dose? Assume the...

  • A 71 kg patient is in need of intravenous iron supplementation. She was ordered to receive...

    A 71 kg patient is in need of intravenous iron supplementation. She was ordered to receive a single intravenous 10 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 - MW=399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 750 mg of stabilized iron sulfate salt in water to produce 25 mL of solution. How many milliequivalents of iron (Fe 3+) will the patient receive as a single dose?

  • I have 2 different questions!! A 71 kg patient is in need of intravenous iron supplementation. He was ordered to...

    I have 2 different questions!! A 71 kg patient is in need of intravenous iron supplementation. He was ordered to receive a single intravenous 6 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 - MW=399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 800 mg of stabilized iron sulfate salt in water to produce 20 mL of solution. How many milliequivalents of iron (Fe 3+) will the patient receive as...

  • how many milliequivalents? what is the osmolarity of this solution? A 66 kg patient is in need of intravenous ir...

    how many milliequivalents? what is the osmolarity of this solution? A 66 kg patient is in need of intravenous iron supplementation. She was ordered to receive a single intravenous 5 mg/kg dose of iron (III) sulfate (ferric sulfate - Fe2(SO4)3 - MW=399.88 g/mol). Iron (III) sulfate was prepared as a stabilized aqueous solution for this patient by dissolving 750 mg of stabilized iron sulfate salt in water to produce 25 mL of solution. How many milliequivalents of iron (Fe 3+)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT