Question

2. A bead of mass m is free to slide along a frictionless wire bent in the curve yx3 where a is a positive constant. The bead starts from rest at x - a and slides under the influence of a constant gravitational field g pointing in the negative y direction. Find the time required for the bead to reach the origin. Express your answer in terms of the constants a and g Hint: Use the energy method. You may use Mathematica to numerically evaluate the integral you obtain (after making it dimensionless)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

al,メ2R 2a 七

Add a comment
Know the answer?
Add Answer to:
2. A bead of mass m is free to slide along a frictionless wire bent in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 5. A bead of mass m is free to slide on a frictionless wire bent in...

    5. A bead of mass m is free to slide on a frictionless wire bent in the shape of a cosine curve y - a cos (k), where a and b are constant. Gravity points in the negative y direction. Suppose the bead starts at rest at the top of a peak. a. Find the radius of curvature of the point at the bottom of a trough. b. Find the tangential and normal components of the acceleration of the bead...

  • 4. A bead of mass m slides on a frictionless wire bent into the shape of...

    4. A bead of mass m slides on a frictionless wire bent into the shape of a parabola 2 yd as shown above. Gravity acts in the negative y direction. A spring with elastic constant k and rest length d/2 connects the bead to a fixed anchor at the point (0, -d). Find the frequency of small oscillations about equilibrium. Hint: Find the potential energy Uof the bead. Then expand Uin series, keeping only the leading x2 term, to obtain...

  • A bead of mass m slides along a frictionless wire under the influence of gravity. The...

    A bead of mass m slides along a frictionless wire under the influence of gravity. The shape of the wire is given by the equation y = axa, where x denotes the horizontal co-ordinate, y denotes the vertical co-ordinate, and a is a constant. (a) Use Lagrange's equation to determine the equation of motion. (b) Compute Hamilton's equations of motion and show that they are equivalent to your result for item (a).

  • A small bead with a mass m = 15.0 g slides along the frictionless wire form...

    A small bead with a mass m = 15.0 g slides along the frictionless wire form shown in the figure. The three heights hA = 7.70 m, hB = 5.50 m, and hC = 2.90 m are all measured from the floor. The bead is released from rest at point A. a) What is the speed of the bead at points B and C? vB = ____ m/s vC = ____ m/s (b) What is the net work done on...

  • A small bead of mass m is free to slide along a long, thin, frictionless rod,...

    A small bead of mass m is free to slide along a long, thin, frictionless rod, which spins in a horizontal plane abut one end at a frequency of f (i.e., f revolutions per second). Show that the displacement of the bead from the center of rotation as a function of time t is given by r(t) = A exp(ct) + B exp(–Ct). Find the expression for the constant C. Also, how would you determine A and B?

  • A frictionless wire is bent into the shape of a cycloid curve, with coordinates given by...

    A frictionless wire is bent into the shape of a cycloid curve, with coordinates given by the parametric equations ? = ?(? + sin ?), ? = ?(1 − cos ?), for −? < ? < ?. The x axis is horizontal, and y is vertically upwards. A bead of mass m slides freely on the wire. Show that the distance s, measured along the wire from the origin, is given by ? = 4? sin. Write out the potential...

  • I need to rescale (4) from the first page to the equation on the second page. 2.[60pts.] A bead of mass m is constrained to slide along a straight rigid horizontal wire. A spring with natural len...

    I need to rescale (4) from the first page to the equation on the second page. 2.[60pts.] A bead of mass m is constrained to slide along a straight rigid horizontal wire. A spring with natural length Lo and spring constant k is attached to the bead and to a support point a distance h from the wire. See Figure 1. Let z(t) denote the position of the bead on the wire at time t. (Note that x is measured...

  • A bead of mass m slides without friction along a rotating wire in the shape of...

    A bead of mass m slides without friction along a rotating wire in the shape of a parabola with zar2, as shown below. The wire is rotating around the z-axis with constant angular velocity w z=ar2 (a) (0.5 point) Determine the Lagrangian for the system in terms of the coordinate r b) (1 point) Apply the Lagrange Equations to obtain the equation of motion. You (c) (0.5 points) Suppose that the bead is moving in a perfect circle of radius...

  • 1. Two boxes are stacked on a frictionless table. M. = 4kg and M, 5kg. The...

    1. Two boxes are stacked on a frictionless table. M. = 4kg and M, 5kg. The coefficient of friction between the boxes is such that when a 27 N force F is applied to the lower box, the boxes start to slip relative to each other. The system is then restored to rest and force F is removed. A horizontal force F is now applied to the upper box. What is this force's maximum value in order for the two...

  • A small block of mass m slides along the frictionless loop the loop track shown below....

    A small block of mass m slides along the frictionless loop the loop track shown below. If it starts from rest at point A, what is the speed of the block at point B? (v = squareroot (10 g R)) What is the net force acting on the block at point C? (Don't forget the gravitational force. (F = -mg (8i + j) At what height above the bottom should the block be released so that the normal force exerted...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT