Question

Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in the figure below. Assume the dome has a diameter of 38.0 cm and is surrounded by dry ar with a breakdown. electric field of 3.00 x 10 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

maximum potential of dome = (break down electric field times the radius of dome)

so V = (3 x 10^6 ) x 0.19 = 5.7 × 10) V = 570 kV

so charge can be found using V == 5.7 × 105

so Q = 12.033 mu C

please rate it up thanks :)

Add a comment
Know the answer?
Add Answer to:
Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome...

    Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in the figure below. Assume the dome has a diameter of 46.0 cm and is surrounded by dry air with a "breakdown" electric...

  • The dome of a Van de Graaff generator receives a charge of 2.6 × 10-4 C...

    The dome of a Van de Graaff generator receives a charge of 2.6 × 10-4 C Find the strength of the electric field in the following situations Hint: Review properties of conductors in electrostatic equilibrium. Also, use the points on the surface are outside a spherically symmetric charge distribution; the total charge may be considered to be located at the center of the sphere.) (a) inside the dome N/C (b) at the surface of the dome, assuming it has a...

  • The collector sphere, or dome, of a Van de Graaff generator builds a net charge of...

    The collector sphere, or dome, of a Van de Graaff generator builds a net charge of 4.5 x 10-3 C. Determine the magnitude of the electric field at various locations. Hint: Review the properties of conductors in electrostatic equilibrium and use Gauss's law. Assume a spherically symmetric distribution of charge on the collector sphere. a. Determine the magnitude of the electric field inside of the collector sphere. E = N/C b. Determine the magnitude of the electric field at the...

  • PLEASE HELP! The metal sphere of a small Van de Graaff generator illustrated in the following...

    PLEASE HELP! The metal sphere of a small Van de Graaff generator illustrated in the following figure has a radius of 20.0 cm. When the electric field at the surface of the sphere reaches 3.0 x io6 V/m, the air breaks down, and the generator discharges. What is the maximum potential the sphere can have before breakdown occurs?

  • A Van de Graaff generator is to be designed to accelerate protons to an energy of...

    A Van de Graaff generator is to be designed to accelerate protons to an energy of 5.0 MeV. If the sphere is to be in air at standard temperature and pressure (STP) what is the minimum diameter of the sphere that can be used considering the fact that the breakdown strength of air is 3.0 MV/m?

  • Tthe Van de Graaff generator and sphere we have been assuming since the start that they...

    Tthe Van de Graaff generator and sphere we have been assuming since the start that they are not polarizing each other. This is an approximation. In this question we will start to be able to assess how good this approximation is ? (a) Use the approximation that the Van de Graaff generator and ball are uniformly charged spheres to find the E-field very close to the surface of the Van de Graaff generator, at the point where the +ve x-axis...

  •   A Van de Graaff generator causes a total charge q to build up on a metal...

      A Van de Graaff generator causes a total charge q to build up on a metal sphere of radius r. Which variable does not affect the electric field at a distance R from the center of the metal sphere? Assume R > r. (1 point) the distance R from the center of the metal sphere the magnitude of the charge q the radius r of the metal sphere the sign of the charge q

  • The sphere of a Van de Graaff generator has a charge of +3.28 μC. A small...

    The sphere of a Van de Graaff generator has a charge of +3.28 μC. A small metal sphere nearby has a charge of +219 nC. They are separated 2.00 m. Let us set axes so that the origin is at the centre of the Van de Graaff generator and the small sphere is at 2.00ˆi m. They are far enough apart that we can make the approximation that they are not polarizing each other, so they can be treated as...

  • The dielectric strength of air (that is, the maximum electric field air can withstand before it...

    The dielectric strength of air (that is, the maximum electric field air can withstand before it becomes a conductor due to ionization) is 3.0 times 10^6 V/m. Small van de Graaf generators are commonly used in hair-raising demonstrations that must achieve a high electric potential. A spherical conductor has a radius of 30 cm (about 1 ft). What is the maximum charge that can be placed on the sphere before dielectric breakdown of the surrounding air occurs? For the charge...

  • The dielectric strength of air (that is, the maximum electric field air can withstand before it...

    The dielectric strength of air (that is, the maximum electric field air can withstand before it becomes a conductor due to ionization) is 3.0 times 10^6 V/m. Small van de Graaf generators are commonly used in hair-raising demonstrations that must achieve a high electric potential. a) A spherical conductor has a radius of 30 cm (about 1 ft). What is the maximum charge that can be placed on the sphere before dielectric breakdown of the surrounding air occurs? b) For...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT