Question

6. The speed v of waves on a string is given by v (F/)12, where F is the tension and H m/L is the mass per unit length of the string. If you double the wavelength λ of a wave on a string, what happens to the wave speed v and the wave frequency f?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
6. The speed v of waves on a string is given by v (F/)12, where F...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The speed of a wave in a string is given by v = √(FT/μ), where FT...

    The speed of a wave in a string is given by v = √(FT/μ), where FT is the tension in the string and μ = mass / length of the string. A 2.00 m long string has a mass of 20.50 g. A 980 g mass is attached to the string and hung over a pulley (see illustration from one of the team problems). The end of the string is then vibrated at a frequency of 130 Hz. Find the...

  • The speed of a wave in a string is given by v = sqrt(FT/μ), where FT...

    The speed of a wave in a string is given by v = sqrt(FT/μ), where FT is the tension in the string and μ = mass/length of the string. A 2.00 m long string has a mass of (A+1.50) g. A (B+25.0) g mass is attached to the string and hung over a pulley (see illustration from one of the team problems). The end of the string is then vibrated at a frequency of (125+C) Hz. Find the wavelength for...

  • The speed of a wave in a string is given by v = √(FT/μ), where FT...

    The speed of a wave in a string is given by v = √(FT/μ), where FT is the tension in the string and μ = mass / length of the string. A 2.00 m long string has a mass of (A+1.50) g. A (B+25.0) g mass is attached to the string and hung over a pulley (see illustration from one of the team problems). The end of the string is then vibrated at a frequency of (125+C) Hz. Find the...

  • A transverse wave with an amplitude of 6 m, a frequency f=6.7 Hz , and a...

    A transverse wave with an amplitude of 6 m, a frequency f=6.7 Hz , and a wavelength λ=6 m is traveling down a taut string. If the wave equation describing the displacement of the string at position x and time t is given by y(x,t)=Asin(kx−ωt) a.) what are the parameters A, k, and ω? b.) What is the speed of the wave traveling down the wire? m/s c.) If the tension in the wire is measured to be 6 N,...

  • A wave pulse travels along a string at a speed of 15m/s what will be this...

    A wave pulse travels along a string at a speed of 15m/s what will be this speed if: The string's tension is doubled? The string's mass is quadrupled(but its length is unchanged)? A guitar string 2m long has a tension of 200N and a mass per unit length of mu=0.5 g/m What is the speed of waves on the string when it is plucked? What is the string's fundamental frequency of vibration when it is plucked? What are the frequency...

  • 1,2 and 3 I. EXPERIMENT 1.10: STANDING WAVES ON STRINGS A. Abstract Waves on a string...

    1,2 and 3 I. EXPERIMENT 1.10: STANDING WAVES ON STRINGS A. Abstract Waves on a string under tension and fixed at both ends result in well-defined modes of vibration with a spectrum of frequencies given by the formula below B. Formulas ē In=n (), n = 1,2,3,... v=JI where fn is the frequency of the nth standing wave mode on the string of length L, linear mass density , and under tension T, and v is the wave speed on...

  • Can you help me to do the calculation and graph for two tables? thank you mass...

    Can you help me to do the calculation and graph for two tables? thank you mass = 100g ANALYSIS AND QUESTIONS: 1. Plot a graph of the wavelength versus the inverse of the frequency, 11f. Draw a "best-fit" straight line and determine the slope. 2. Determine the tension of the string from knowledge of the slope. 3. Compute the velocity v of the wave in the string using Eqn. (2). 4. As the frequency is increased, what happens to the...

  • By wiggling one end, a sinusoidal wave is made to travel along a stretched string that...

    By wiggling one end, a sinusoidal wave is made to travel along a stretched string that has a mass per unit length of 22.0 g/m. The wave may be described by the wave function y 0.20 sin (0.90x-42) where x and y are in meters and t s in seconds. 1. (a) Determine the speed of the wave. Is the wave moving in the +x direction or the -x direction? b) What is the tension in the stretched string? (c)...

  • Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review...

    Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review the following topics and relevant textbook sections from Serway / Jewett "Physics for Scientists and Engineers", 9th Ed. • Mathematics of Traveling Waves (Serway 17.2) • Speed of Waves on a String (Serway 17.3) • Superposition of Waves (Serway 18.1) • Standing Waves on a string (Serway 18.2, 18.3) Introduction Imagine two sinusoidal traveling waves with equal amplitudes and frequencies moving in opposite directions....

  • University Physics I Spring 2019 7. (15 pts) A horizontal string of length L has one...

    University Physics I Spring 2019 7. (15 pts) A horizontal string of length L has one end fixed and the other end free to move vertically (but not horizontally). The relationship between L and the wavelength X for standing waves on the string is _2m +1, (1) where m = 0 corresponds to the fundamental, m = 1 to the first overtone, m = 2 to the second overtone, etc. Suppose the wavelength of overtone m is 9 cm and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT