Question

how to solve it ?

Δ59. emit sound waves ofidentical wavelength and armplitude. They are situated as shown in figure 19. The two speakers are in phase. A listener starts walking from point D toward S2 along a line perpendicular to the line joining S1 and S2. How many times will he hear a minimum in sound intensity as he moves from D to S2? (Ans: 4) Two loudspeakers, SI and S2,

S1 S그 Figure 19

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans Fos min imom Pecth difference. 2 a d 6 d ,-, 쁠 볼 So, tota 4 mini to place

Add a comment
Know the answer?
Add Answer to:
how to solve it ? Δ59. emit sound waves ofidentical wavelength and armplitude. They are situated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two sources 51 and 52 that emit sound waves in phase are separated by a distance...

    Two sources 51 and 52 that emit sound waves in phase are separated by a distance d 2.00 m. A detector P can moved along a line that is perpendicular to the line joining the speakers and passes through 51. If the wavelength is 3.00 m, what is the smallest distance between S, and P that will result in destructive interference at P? S1 and 52 are separated by d, POINT P IS LOCATED ON A LINE PERPENDICU;AR TO D,...

  • Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers...

    Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 42 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 49 cm . What is the wavelength of the sound? If the distance between the speakers continues to increase, at what separation will the sound intensity again be a maximum?

  • Two loudspeakers emit sound waves alongthe x-axis. The sound has maximum intensity when thespeakers...

    Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 15 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 59 cm.Part AWhat is the wavelength of the sound?Part BIf the distance between the speakers continues to increase, at what separation will the sound intensity again be a maximum?

  • Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers...

    Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 17 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 70 cm . What is the wavelength of the sound? (Express your answer to two significant figures and include the appropriate units.) (btw its not 106 cm)

  • Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers...

    Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 15 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 62 cm. What is the wavelength of the sound? Express your answer to two significant figures and include the appropriate units. If the distance between the speakers continues to increase, at what separation will the sound intensity again be a maximum? Express...

  • Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers...

    Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 22cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 50cm . If the distance between the speakers continues to increase, at what separation will the sound intensity again be a maximum?

  • Interference waves of sound

    1. Two loudspeakers 6.0 m apart are playing the same frequency. If you stand 10.0 m in front of the plane of the speakers, centered between them, you hear a sound ofmaximum intensity. As you walk parallel to the plane of the speakers, staying 10.0 in front of them, you first hear a minimum of sound intensity when you are directlyin front of one of the speakers. What is the frequency of the sound? Assume a sound speed of 340...

  • Two identical loudspeakers 2.10 m apart are emitting sound waves into a room where the speed...

    Two identical loudspeakers 2.10 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standing 5.00 m in front of one of the speakers, perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound. What is the lowest possible frequency of sound for which this is possible?

  • Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound...

    Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound with the same wavelength, and they are in phase (they emit peaks of the sound wave at the same time). The location labeled C is a location of constructive interference, and the location labeled D is a location of destructive interference. The distances from the loudspeakers to the locations are as indicated. (Picture may not be to scale!!) (a) What is the wavelength of...

  • Two stereo speakers mounted 5.2 m apart on a wall emit identical in -phase sound waves....

    Two stereo speakers mounted 5.2 m apart on a wall emit identical in -phase sound waves. You are standing at the opposite wall of the room at a point directly between the two speakers. You walk 2.11 m parallel to the wall, to a location where you first notice that the sound intensity drops to zero. If the wall along which you are walking is 10.7 m from the wall with the speakers, what is the wavelength of the sound...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT