Question

Let X1, X2, ..., Xn be iid with pdf f(x|θ) = θ*x(θ-1). a) Find the Maximum Likelihood Estimator of θ, and b) show that its variance converges to 0 as n approaches infinity.

I have no problem with part a, finding the MLE of θ. However, I'm having some trouble with finding the variance.

The professor walked us through part b generally, but I need help with univariate transformation for sigma(-ln(xi)) (see picture below - the professor used Y=sigma(-ln(x)), and w=sigma(Yi). I need help particularly with the w=signma(Yi) transformation.

Let Y -Inx

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Let X1, X2, ..., Xn be iid with pdf f(x|θ) = θ*x(θ-1). a) Find the Maximum...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose X1, X2, . . . , Xn are iid with pdf f(x|θ) = θx^(θ−1) I(0...

    Suppose X1, X2, . . . , Xn are iid with pdf f(x|θ) = θx^(θ−1) I(0 ≤ x ≤ 1), θ > 0. (a) Is − log(X1) unbiased for θ^(−1)? (b) Find a better estimator than log(X1) in the sense of with smaller MSE. (c) Is your estimator in part (b) UMVUE? Explain.

  • Suppose thatX1,...Xn are IID with pdf f(x;θ) = 1 /2θ if -θ<x<θ otherwise =0 (a) Find...

    Suppose thatX1,...Xn are IID with pdf f(x;θ) = 1 /2θ if -θ<x<θ otherwise =0 (a) Find an unbiased estimator of θ. You must prove that your estimator is unbiased. (b) Find the variance of the estimator in (a).

  • Suppose X1, X2, ..., Xn is an iid sample from fx(r ja-θ(1-z)0-11(0 1), where x θ>0....

    Suppose X1, X2, ..., Xn is an iid sample from fx(r ja-θ(1-z)0-11(0 1), where x θ>0. (a) Find the method of moments (MOM) estimator of θ. (b) Find the maximum likelihood estimator (MLE) of θ (c) Find the MLE of Po(X 1/2) d) Is there a function of θ, say T 0), for which there exists an unbiased estimator whose variance attains the Cramér-Rao Lower Bound? If so, find it and identify the corresponding estimator. If not, show why not.

  • Let X1 , . . . , xn be n iid. random variables with distribution N (θ, θ) for some unknown θ > 0....

    Let X1 , . . . , xn be n iid. random variables with distribution N (θ, θ) for some unknown θ > 0. In the last homework, you have computed the maximum likelihood estimator θ for θ in terms of the sample averages of the linear and quadratic means, i.e. Xn and X,and applied the CLT and delta method to find its asymptotic variance. In this problem, you will compute the asymptotic variance of θ via the Fisher Information....

  • Suppose that X1, X2, ,Xn is an iid sample from Íx (x10), where θ Ε Θ....

    Suppose that X1, X2, ,Xn is an iid sample from Íx (x10), where θ Ε Θ. In each case below, find (i) the method of moments estimator of θ, (ii) the maximum likelihood estimator of θ, and (iii) the uniformly minimum variance unbiased estimator (UMVUE) of T(9) 0. exp fx (x10) 1(0 < x < 20), Θ-10 : θ 0}, τ(0) arbitrary, differentiable 20 (d) n-1 (sample size of n-1 only) ー29 In part (d), comment on whether the UMVUE...

  • Let X1, ..., Xn be IID observations from Uniform(0, θ). T(X) = max(X1, . . ....

    Let X1, ..., Xn be IID observations from Uniform(0, θ). T(X) = max(X1, . . . Xn) is a sufficient statistic (additionally, T is the MLE for θ). Find a (1 − α)-level confidence interval for θ. [Note: The support of this distribution changes depending on the value of θ, so we cannot use Fisher’s approximation for the MLE because not all of the regularity assumptions hold.]

  • Let X1, X2,...,Xn denote a random sample from a distribution that is N(0, θ). a) Show...

    Let X1, X2,...,Xn denote a random sample from a distribution that is N(0, θ). a) Show that Y = sigma (1 to n) Xi2 is a complete sufficient statistic for θ. (solved) b) Find the UMVUE of θ2. (need help with this one) Note: I am in particular having trouble finding out what distribution Y = sigma Xi^2 is. The professor advise us to find the second moment generating function for Y, but I not sure how I find that....

  • As on the previous page, let X1,... ,Xn be iid with pdf where θ > 0. (to) 2 Possible points (qual...

    As on the previous page, let X1,... ,Xn be iid with pdf where θ > 0. (to) 2 Possible points (qualifiable, hidden results) Assume we do not actually get to observe Xı , . . . , X. . Instead let Yı , . . . , Y, be our observations where Yi = 1 (Xi 0.5) . Our goal is to estimate 0 based on this new data. What distribution does Y follow? First, choose the type of distribution:...

  • Let X1 Xn be a random sample from a distribution with the pdf f(x(9) = θ(1...

    Let X1 Xn be a random sample from a distribution with the pdf f(x(9) = θ(1 +0)-r(0-1) (1-2), 0 < x < 1, θ > 0. the estimator T-4 is a method of moments estimator for θ. It can be shown that the asymptotic distribution of T is Normal with ETT θ and Var(T) 0042)2 Apply the integral transform method (provide an equation that should be solved to obtain random observations from the distribution) to generate a sam ple of...

  • 1. Let X1,... , Xn be IID random points from Exp(1/B). The PDF of Exp(1/B) is...

    1. Let X1,... , Xn be IID random points from Exp(1/B). The PDF of Exp(1/B) is for x 〉 0. Let X,-1 Σー X, be the sample average. Let 3 be the parameter of interest that we want to estimate. Xi be the sample average. Let B be the parameter of (a) (1 pt) What is the bias and variance of using the sample average Xn as the estimator of 3? (b) (0.5 pt) What is the mean square error...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT