Question

In the figure, a string, tied to a sinusoidal oscillator at P and running over a support at Q. Is stretched by a block of mas
0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

I Given data, pequency, f = 1042 density, to zl14g.m n=4 2114410?1976 L=lom, a) we ienow that, massim=4 2²6²4 nag = 4x12x610)

Add a comment
Know the answer?
Add Answer to:
In the figure, a string, tied to a sinusoidal oscillator at P and running over a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • a. In the figure below, a string is tied to a sinusoidal oscillator at P and...

    a. In the figure below, a string is tied to a sinusoidal oscillator at P and runs over a rigid support at Q, and is stretched by a block of mass m. The separation L - 1.77 m, the linear mu = 16 g/m, and the oscillator frequency f = 125 Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists at Q. If m = 2.000...

  • In the figure below, a string, bed to a sinusoidal oscillator at P and running over...

    In the figure below, a string, bed to a sinusoidal oscillator at P and running over a support at Q, is stretched by a block of mass m. The separation L between P and Q is 1.80 m, and the frequency f of the oscillator Is fixed at 120 Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists at Q. A standing wave appears when the...

  • Chapter 16, Problem 058 In the figure, a string, ted to a s' soida oscilator atp...

    Chapter 16, Problem 058 In the figure, a string, ted to a s' soida oscilator atp and running over a support at is stretched by a block o mass m Separation L Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists atQ (a) What mass m allows the oscillator to set up the fourth harmonic on the string? 1.5 m linear density μ 1.4 gr and...

  • Detailed explantion please. PITY263: Ch 16 Written Tomework, Due Thursday, Sept 12 at 8:00 am Note...

    Detailed explantion please. PITY263: Ch 16 Written Tomework, Due Thursday, Sept 12 at 8:00 am Note on homework solutions: In order to receive full credit for homework solutions, your work needs to be presented clearly, neatly, and completely. State answers to no more than three significant figures. 1. A sinusoidal transverse wave is traveling along a taut wire in the negative x-direction. It has an angular wave number of 1.50 cm-1, a period of 2.50 ms, and an amplitude of...

  • A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator...

    A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. A simple harmonic oscillator at the position x = 0 generates a wave...

  • *142 An oscillator that generates a sinusoidal wave on a string completes 40 vibrations in 50...

    *142 An oscillator that generates a sinusoidal wave on a string completes 40 vibrations in 50 s. The wave peak is observed to travel a distance of 1.4 m along the string in 5 s. What is the wavelength?

  • A strong string of mass 3.00 g and length 2.20 m is tied to supports at...

    A strong string of mass 3.00 g and length 2.20 m is tied to supports at each end and is vibrating in its fundamental mode. The maximum transverse speed of a point at the middle of the string is 8.10 m/s . The tension in the string is 330 N. A)What is the amplitude of the standing wave at its antinode? Express your answer with the appropriate units. B)What is the magnitude of the maximum transverse acceleration of a point...

  • Name: - Harmonics Worksheet Wave on a String One end of a string with a linear...

    Name: - Harmonics Worksheet Wave on a String One end of a string with a linear mass density of 1.45 . 10-2 kg/m is tied to a mechanical vibrator that can oscillate up and down. The other end hangs over a pulley 80 cm away. The mass hanging from the free end is 3 kg. The left end is oscillated up and down, which will create a standing wave pattern at certain frequencies. Draw the first five standing wave patterns...

  • A simple harmonic oscillator at the position x = 0 generates a wave on a string....

    A simple harmonic oscillator at the position x = 0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. Question 2 9 pts Consider the piece of string at x...

  • Problem 2 [8 pts] Oscillator As a quality control technician at a violin string factory, you cut a sample of E-string o...

    Problem 2 [8 pts] Oscillator As a quality control technician at a violin string factory, you cut a sample of E-string off a large roll. The sample that you cut has a mass of ms = 1.021 grams and a full length of 2.5 meters. To test the string, you stretch some of it across a length L = 0.35 m, applying tension by means of a hanging mass m (as pictured). A variable frequency oscillator is used to excite...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT