Question

Explain why a charged particle is moving in a circular path in a uniform


 a) Explain why a charged particle is moving in a circular path in a uniform

 b) A particle of charge 3.2 x 10-19 C and velocity of 2 x 105 ms-1 enters a magnetic field uniform magnetic field of magnetic field strength, 0.2 T. If the particle moves in circular path of radius 4.0 cm, calculate the mass of the charged particle. 


1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Explain why a charged particle is moving in a circular path in a uniform
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A negatively charged particle in a uniform magnetic field follows a circular path.  The particle's speed is...

    A negatively charged particle in a uniform magnetic field follows a circular path.  The particle's speed is 240 m/s, the magnitude of the magnetic field is 0.28 T, and the radius of the path is 830 m. a) Determine the mass of the particle, given that its charge has a magnitude of 9.6 x 10^-4 C. b) Choose the sketch which correctly shows the direction of the magnetic field (in red) and the direction of the particle's circular motion (in green)....

  • A charge particle enters a uniform magnetic field and follows the circular path shown in the...

    A charge particle enters a uniform magnetic field and follows the circular path shown in the drawing. f (a) Is the particle positively or negatively charged? O positive O negative O electrically neutral Why? This answer has not been graded yet (b) The particle's speed is 110 m/s, the magnitude of the magnetic field is 0.46 T, and the radius of the path is 960 m. Determine the mass of the particle, given that its charge has a magnitude of...

  • Active Figure Motion of a Charged Particle in a Uniform Magnetic Field The animation below illustrates...

    Active Figure Motion of a Charged Particle in a Uniform Magnetic Field The animation below illustrates a charged particle moving in circular motion due to the magnetic force caused by a constant and uniform magnetic field oriented into the page. The blue crosses represent the tails of the magnetic field vectors nstructions: Use the blue sliders to adjust the mass, speed, particle charge and magnetic field magnitude. Change each parameter and observe the eftect on the particle's motion. If the...

  • A charged particle moves through a velocity selector at a constant speed in a straight line....

    A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 3.20×10^3 N/C, while the magnetic field is 0.250 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 4.60 cm. Find the charge-to-mass ratio of the particle.

  • I know it can be done using Right Hand Rule, but don't know how to solve it practically. Please help explain how to apply right-hand rule actually. Thanks! A small charged particle of charge q7....

    I know it can be done using Right Hand Rule, but don't know how to solve it practically. Please help explain how to apply right-hand rule actually. Thanks! A small charged particle of charge q7.0 x 10-6C and mass m - 3.1 x 10-12kg is accelerated through a potential difference of 19.6V before it enters a region of uniform magnetic field as shown by the rectangle in the following figure. The particle is observed to travel in the semicircular path...

  • Please explain the solution 2. A charged particle moving in the r-direction enters a region of...

    Please explain the solution 2. A charged particle moving in the r-direction enters a region of uniform magnetic field B Bo(x +y). The path of the particle after it enters the field is a (A) circle (B) cycloid (C) helix (D) straight line (E) logarithmic spiral

  • A. An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg....

    A. An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It is accelerated from rest through a potential difference that has a value of 1.67 × 106 V and then enters a uniform magnetic field whose magnitude is 2.49 T. The α-particle moves perpendicular to the magnetic field at all times. What is (a) the speed of the α-particle, (b) the magnitude of the magnetic force on it, and (c) the radius of its...

  • 3. (a) Show that when a particle with mass m and charge q enters a magnetic...

    3. (a) Show that when a particle with mass m and charge q enters a magnetic field having its velocity v perpendicular to the direction of the magnetic field B, it will perform a mv circular path of radius R- qB (b) Using the previous result find an expression for the period T of the circular motion. (c) A charged particle moves into a region of uniform magnetic field, goes through half a circle and then exits that region, as...

  • Please answer quickly, will upvote immediately! A charged particle moves through a velocity selector at a...

    Please answer quickly, will upvote immediately! A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 3.56E+3 N/C, while the magnetic field is 0.332 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 4.58 cm. Calculate the charge-to-mass ratio of the particle. Submit Answer Tries 0/10

  • A proton (charge le, mass mp) and an alpha particle (charge 2e, mass 4mp) in a...

    A proton (charge le, mass mp) and an alpha particle (charge 2e, mass 4mp) in a mass spectrometer are accelerated from rest through a velocity selector that has an electric field E 103 V/m and magnetic field B- 2.5T. Each of the particles enters a uniform magnetic field B-2.5T, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius rp. and the alpha particle in a circular path ra. Calculate the distance...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT