Question

2. You will solve the following problem twice, first using kinematics and second using the ideas of conservation of energy: A

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The speed of mass

3.5 ८e8 (/-२॥ H] ২# = এ tn 3.5 Ce8 (1-२।] 2. ৪ 4- C०४ (।-२rJ = २৪ 3 S then c०৪ (०-৪] ।-२T E ! २7+ 3 ৪? andd vCt = dxi -3.5x/२WA2-x2 1-2 T3s2-2-22 VE

Add a comment
Know the answer?
Add Answer to:
2. You will solve the following problem twice, first using kinematics and second using the ideas...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. You will solve the following problem twice, first using kinematics and second using the ideas...

    2. You will solve the following problem twice, first using kinematics and second using the ideas of conservation of energy: A mass is attached to a spring with a spring constant of k=11 N/m. The motion of the mass can be described by the equation r(t) = 35 cos (1.210 t), where x(t) is cm. You want to figure out how fast the mass is moving at x = 28 cm. a. Find a solution using the kinematic relationship, v(t)...

  • Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x...

    Can you please answer both questions, Y=0 Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x (30 cm) cos[(6.28 rad/s)t + /4) Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed (e) maximum acceleration of the block, and (e) the total energy of the spring-block. of the block Problem 4 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 + y)...

  • z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by...

    z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by = (30 cm) cos[(6.28 rad/s)t + /4]. Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed of the block, (e) maximum acceleration of the block, and (e) the total energy of the spring-block. Problem 3 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 s, and amplitude of 20 cm. The mechanical...

  • Could you please answer all of the following questions? 1. A 3 kg object attached to...

    Could you please answer all of the following questions? 1. A 3 kg object attached to a spring oscillates with an amplitude of 15 cm and a period of 2 s. At a time t = 0.5 s, the object's position is x = 9.1 cm. Determine a) the spring constant of the spring b) the total energy of the system (in joules) c) the maximum speed of the object d) the position of the object as a function of...

  • Problem #1: 10 points A spring having a spring constant k is placed on a smooth...

    Problem #1: 10 points A spring having a spring constant k is placed on a smooth horizontal table and the left end is fixed. A mass of 200 g is attached to the other end of the spring. The mass is pushed 10.0 cm (to the left) against the spring, then released. A student with a stopwatch finds that 10 oscillations take 12.0 s. Draw a neat diagram showing the spring, mass, amplitude, equilibrium position, and both ends of the...

  • Problem #1: 10 points A spring having a spring constant k is placed on a smooth...

    Problem #1: 10 points A spring having a spring constant k is placed on a smooth horizontal table and the left end is fixed. A mass of 200 g is attached to the other end of the spring. The mass is pushed 10.0 cm (to the left) against the spring, then released. A student with a stopwatch finds that 10 oscillations take 12.0 s. (A) Draw a neat diagram showing the spring, mass, amplitude, equilibrium position, and both ends of...

  • Problem 2 A 0.175-kg glider on a horizontal, frictionless air track is attached to a fixed...

    Problem 2 A 0.175-kg glider on a horizontal, frictionless air track is attached to a fixed ideal spring with spring constant 155 N/m. When the glider is 3.00 cm from its equilibrium point, it is moving at 0.815 m/s. (a) Find the frequency of the oscillations. (b) Find the amplitude of the motion. (c) Find the maximum speed of the glider. Hint: For (b) and (c), use the energy conservation.

  • 2. Following problem 1, the same spring-mass is oscillating, but the friction is involved. The spring-mass starts oscillating at the top so that its displacement function is x Ae-yt cos(wt)...

    2. Following problem 1, the same spring-mass is oscillating, but the friction is involved. The spring-mass starts oscillating at the top so that its displacement function is x Ae-yt cos(wt)t is observed that after 5 oscillation, the amplitude of oscillations has dropped to three-quarter (three-fourth) of its initial value. (a) 2 pts] Estimate the value ofy. Also, how long does it take the amplitude to drop to one-quarter of initial value? 0 Co [2 pts] Estimate the value of damping...

  • For the later problem, I do not know how to find the pseudo oscillations or the...

    For the later problem, I do not know how to find the pseudo oscillations or the shift in cos. Show your work for each problem. Thanks! homework5: Problem 2 Previous Problem List Next 1 point Math 216 Homework homework5, Problem 2 A mass of 625 grams is attached to the end of a spring that is stretched 90 cm by a force of 9 N. At time t = 0 the mass is pulled 1 meters to the right, stretching...

  • A physics lab demonstrates the principles of simple harmonic motion (SHM) by using a spring affixed...

    A physics lab demonstrates the principles of simple harmonic motion (SHM) by using a spring affixed to a horizontal support. The student is asked to find the spring constant, k. After suspending a mass of 295.0 g from the spring, the student notices the spring is displaced by 49.5 cm from equilibrium. With this information, calculate the spring constant. = ___________ N/m The student realizes that the spring demonstrates SHM with the attached mass of 295.0 g. The student is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT