Question

Previous Problem List Next 11 point) Suppose a pendulum with length Limeters) has angle iradians) from the vertical. It can b
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Previous Problem List Next 11 point) Suppose a pendulum with length Limeters) has angle iradians) from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as...

    (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0) ~ 0, and with that substitution, the differential equation becomes linear A. Determine the equation of motion of a...

  • (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It...

    (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It can be shown that e as a function of time satisfies the differential equation: de 8 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of we can use the approximation sin(0) - 0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum...

  • show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0...

    show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 +sin0 0 dt2 where g 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0)~0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum with length...

  • (radians) from the vertical. It can be shown that as a function of time satisfies the...

    (radians) from the vertical. It can be shown that as a function of time satisfies the (1 point) Suppose a pendulum with length L (meters) has angle differential equation: d20 + & sin 0 = 0 dt 2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of we can use the approximation sin() ~ 0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum...

  • (1 point) Suppose a pendulum of length L meters makes an angle of θ radians with the vertical, as n the figure t can be...

    (1 point) Suppose a pendulum of length L meters makes an angle of θ radians with the vertical, as n the figure t can be shown that as a function of time, θ satisfies the differential equation d20 + sin θ-0, 9.8 m/s2 is the acceleration due to gravity For θ near zero we can use the linear approximation sine where g to get a linear di erential equa on d20 9 0 dt2 L Use the linear differential equation...

  • The figure shows a pendulum with length L that makes a maximum angle oo with the...

    The figure shows a pendulum with length L that makes a maximum angle oo with the vertical. Using Newton's Second Law, it can be shown that the period T (the time for one complete swing) is given by T = 4 7,6" sin(100) dx 1 - k2 sin2(x) where k = sin and g is the acceleration due to gravity. If L = 5 m and 0. = 46°, use Simpson's Rule with n = 10 to find the period....

  • T = 4V The figure shows a pendulum with length L that makes a maximum angle...

    T = 4V The figure shows a pendulum with length L that makes a maximum angle @o with the vertical. Using Newton's Second Law, it can be shown that the period T (the time for one complete swing) is given by -TT/2 dx L go 1 - k2 sin2(x) where k = sin(100) and g is the acceleration due to gravity. If L = 2 m and 60 = 46°, use Simpson's Rule with n = 10 to find the...

  • USE MATLAB ALSO PLOT THE PENDULUM animation Case 1: Pendulum Create a plot that shows a...

    USE MATLAB ALSO PLOT THE PENDULUM animation Case 1: Pendulum Create a plot that shows a pendulum moving. First,use the ode45 function to solve the pendulum equation between 0 and 10 seconds. The pendulum equation is: Create a plot that shows a pendulum moving First, use the ode45 function to solve the pendulum equation between 0 and 10 seconds. The pendulum equation is: + sin(e) 0 where g is gravity and L is the length of the pendulum bar. Use...

  • Inhomogeneous and polar probs: Problem 6 Previous Problem Problem List Next Problem (1 point) A c...

    Inhomogeneous and polar probs: Problem 6 Previous Problem Problem List Next Problem (1 point) A circular membrane of radius 3 is clamped along its circumference, and the displacement u(r, t) satisfies the differential equation Suppose that the membrane starts from rest with the initial displacement f(r) = 9-r2,0 < r < 3, then the solution is given by u(r,t)-Σ(An cos(Ant) + Bn sin(Ant) )J。( (anr) where Bn and with and g(r) Given the first 3 zeros of Bessel function Jo(x)...

  • Part 1: (Theory) Simple Pendulum 1. Consider a mass m hanging from a string of length...

    Part 1: (Theory) Simple Pendulum 1. Consider a mass m hanging from a string of length L that makes an angle with the vertical (shown below). Assume the string is massless and that the hanging object is a point mass. Use Newton's Second Law directly to show that the equation of motion for this simple pendulum can be written: (LO) = -mgsin(o), (1) dia where is the angular displacement of the pendulum from its vertical equilibrium position (and is a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT