Question

PRACTICE PROBLEM 4-5: The red line in sion spectrum of hydrogen occurs at 656.3 nm. the frequency of these photons. e in the
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
PRACTICE PROBLEM 4-5: The red line in sion spectrum of hydrogen occurs at 656.3 nm. the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Calculate the wavelength (in nm) of the red line in the visible spectrum of excited H...

    Calculate the wavelength (in nm) of the red line in the visible spectrum of excited H atoms using Bohr Theory. (Question #2) QUESTIONS 1. Determine the energy change (in Joules) associated with the transition from n = 2 to n 4 in the Hydrogen atom. AE 2.18 x 10 J nf - tests AE2.1io o.as-o.o6d5) x IDJ -/4 2. Calculate the wavelength (in nm) of the red line in the visible spectrum of excited H atoms using Bohr Theory.

  • The hydrogen spectrum shows 4 lines in the region visible spectral (this series is called the...

    The hydrogen spectrum shows 4 lines in the region visible spectral (this series is called the Balmer series: Hα (red): λ= 656.3 nm, Hβ (blue-green): λ = 481.1 nm, Hγ (purple): λ = 434.1 nm, and Hλ (purple): λ = 410.2 nm). Another series in the hydrogen spectrum is the Lyman series. Determine the wavelength of the second line of the Lyman series in m and nm (give two digits after the decimal point).

  • The hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434...

    The hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434 nm. What are the angular separations between these two spectral lines for all visible orders obtained with a diffraction grating that has 4 170 grooves/cm? (In this problem assume that the light is incident normally on the gratings.) first order separation 1

  • 2 &3 all please 2. The first line of the Balmer series occurs at a wavelength of 656.3 nm. What is the energy...

    2 &3 all please 2. The first line of the Balmer series occurs at a wavelength of 656.3 nm. What is the energy difference between the two energy levels involved in the emission that results in this spectral line? 3. An advertising sign gives off red light and green light. a. Which light has the higher energy photons? b. One of the colors has a wavelength of 680 nm and the other has a wavelength of 500 nm. Which color...

  • The hydrogen spectrum has a red line at 656 nm and a violet line at 434...

    The hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm. What are the angular separations between these two spectral lines obtained with a diffraction grating that has 4180 grooves/cm? (Note: In this problem assume that the light is incident normlyon the gratings.) first order separation second order separation

  • 4. An intense emission line for a new element is observed at a wavelength of 325...

    4. An intense emission line for a new element is observed at a wavelength of 325 nm. What is the frequency of this ight? Frequency Tries 0/2 Submit Answer 5. An intense emission line for a new element is observed at a wavelength of 700 nm. What is the energy of a single photon of this light Energy Tries 0/2 Submit Ans 6. For the line spectra experiment you analyzed the Baimer series to determine n and nu in the...

  • In the line spectrum of hydrogen there is a ultraviolet line with wavelength 383.5 nm. The...

    In the line spectrum of hydrogen there is a ultraviolet line with wavelength 383.5 nm. The frequency of this line is ______ Hz. The energy is _____ J per photon, or ______ kJ/mol. This line corresponds to a transition from the excited state with n=9 to a lower state with n=2. The energy of the lower state is -5.45×10-19 J, so the energy of the excited state with n=9 must be ______ J.

  • The hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434...

    The hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434 nm. If light from a hydrogen lamp is incident on a diffraction grating that has 4500 groove/cm, what is the distance between the 2nd order maxima for the red and blue-violet lines on the same side of the central maximum that is imaged on a large screen that is 1.50 m away?

  • 4. In the hydrogen spectrum, a visible line is generated when an electron drops from level...

    4. In the hydrogen spectrum, a visible line is generated when an electron drops from level 3 to level 2. What is the wavelength in nanometers of the line generated in the hydrogen spectrum? 656 nm 6.56 x 10^-7 m 4.56 x 10^14/sec 4.56 x 10^14/sec

  • 1.(3) The line of longest wavelength in visible light for the emission spectrum of hydrogen, 656nm...

    1.(3) The line of longest wavelength in visible light for the emission spectrum of hydrogen, 656nm (Balmer series), would correspond to what electronic transition? 2.(7) Explain the wave-particle duality of matter and light. Why don’t we notice this effect in everyday activities? What do electrons behave most like in an atom? 3.(8) What is the approximate range, in nm, for visible light? Which end contains photons of the highest energy? What is the mathematical relationship between energy of a photon...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT