Question

This is the Question. NOTE: There is no relation between A and B1. (25 points)An infinitely long, conducting, cylindrical shell has inner radius A outer radius B. There is an infinitely long line of charge at the axis of the shell w constant charge per unit length .. B{AL + + + + + + + Find the electric potential difference between a point inside the shell a distance from the center and a point a distance 2B from the center,And this is the answer in the next picture. How is the answer below achieved?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
This is the Question. NOTE: There is no relation between A and BAnd this is the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A point charge q is located a distance r from the center of a conducting shell...

    A point charge q is located a distance r from the center of a conducting shell with inner radius R​1​​ and outer radius R​2​​. What is the electric potential at the center of the shell, assuming r <R​1​​? Question 7 A point charge q is located a distance r from the center of a conducting shell with inner radius R1 and outer radius R2. What is the electric potential at the center of the shell, assuming r< R1? Select the...

  • An infinitely long solid conducting cylindrical shell of radius a = 3.8 cm and negligible thickness...

    An infinitely long solid conducting cylindrical shell of radius a = 3.8 cm and negligible thickness is positioned with its symmetry axis along the z-axis as shown. The shell is charged, having a linear charge density λinner = -0.55 μC/m. Concentric with the shell is another cylindrical conducting shell of inner radius b = 13.1 cm, and outer radius c = 17.1 cm. This conducting shell has a linear charge density λ outer = 0.55μC/m. (Please answer #2-5) 1) What...

  • An infiinitely long solid conducting cylindrical shell of radius a = 4.8 cm and negligible thickness...

    An infiinitely long solid conducting cylindrical shell of radius a = 4.8 cm and negligible thickness is positioned with its symmetry axis along the z-axis as shown. The shell is charged, having a linear charge density λinner = -0.51 μC/m. Concentric with the shell is another cylindrical conducting shell of inner radius b = 15 cm, and outer radius c = 17 cm. This conducting shell has a linear charge density λ outer = 0.51μC/m. 1.What is Ex(P), the x-component...

  • Concentric Cylindrical Conducting Shells 1 An infiinitely long solid conducting cylindrical shell of radius a =...

    Concentric Cylindrical Conducting Shells 1 An infiinitely long solid conducting cylindrical shell of radius a = 4.8 cm and negligible thickness is positioned with its symmetry axis along the z-axis as shown. The shell is charged, having a linear charge density ?inner = -0.35 ?C/m. Concentric with the shell is another cylindrical conducting shell of inner radius b = 17.1 cm, and outer radius c = 21.1 cm. This conducting shell has a linear charge density ? outer = 0.35?C/m....

  • An infinitely long cylinderical capacitor initially has a linear charge density of +8.00 nC/m (nanocoloumbs per...

    An infinitely long cylinderical capacitor initially has a linear charge density of +8.00 nC/m (nanocoloumbs per meter) on the inner conducting cylinder and -8.00 nC/m on the outer conducting cylinder. The radius of the inner conducting cylinder is a = 0.060 m and the radius of the outer conducting shell is b = 0.110 m. See the figure of a small piece of the capacitor below: Part A W Find the magnitude of the electric field 0.019 m from the...

  • 5. Find the electric field E of an infinitely long cylindrical shell with volume charge density...

    5. Find the electric field E of an infinitely long cylindrical shell with volume charge density ped = k/? where ? is the radial distance from the central axis of the cylinder. The inner radius of the shell is a and the outer radius is b.

  • A capacitor is composed of two cylindrical conducting shells. The inner shell has a radius A,...

    A capacitor is composed of two cylindrical conducting shells. The inner shell has a radius A, is centered inside the outer shell and has a positive surface charge density +3s. The outer shell has radius B = 3A and negative surface charge density -s. Assume the length of the conductors is ?infinitely? long compared to the radius B so that you can ignore all edge effects. Let r be the vector pointing from the center of the capacitor to any...

  • An infinitely long solid insulating cylinder of radius a = 5.5 cm is positioned with its...

    An infinitely long solid insulating cylinder of radius a = 5.5 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density rho = 25 mu C/m^3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.4 cm, and outer radius c = 17.4 cm. The conducting shell has a linear charge density lambda = -0.42 mu C/m. 1) What is E_y(R), the y-component of...

  • (Figure 1)An infinitely long conducting cylindrical rod with a positive charge, per unit length is surrounded...

    (Figure 1)An infinitely long conducting cylindrical rod with a positive charge, per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of -21 and radius , as shown in the figure. Part A What is E (r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance from the axis of the cylindrical rod? Express your answer in terms of...

  • A charge of uniform linear density 2.00 nC/m is distributed along a long, thin, nonconducting rod.

    A charge of uniform linear density 2.00 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.40 cm, outer radius = 10.2 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.6 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT