Question

Consider an infinite 1D square well with a length L with a particl of mass M trapped inside. (a) Calculate the expectation va
0 0
Add a comment Improve this question Transcribed image text
Answer #1

CN, ) 드。 Sinu schAlbo pro od X5レ KDA dx 드0 2 ャ 卫一 :V 12 Le t

Add a comment
Know the answer?
Add Answer to:
Consider an infinite 1D square well with a length L with a particl of mass M...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Consider a particle of mass m in an infinite square well with potential energy 0...

    1. Consider a particle of mass m in an infinite square well with potential energy 0 for 0 Sz S a oo otherwise V (x) For simplicity, we may take the 'universe' here to be the region of 0 S z S a, which is where the wave function is nontrivial. Consequently, we may express stationary state n as where En is the associated mechanical energy. It can be shown that () a/2 and (p:)0 for stationary state n. (a)...

  • A particle of mass m is subject to a doubly infinite square well, with widths L,...

    A particle of mass m is subject to a doubly infinite square well, with widths L, located at (a/2, a/2). The eigenstate wave functions for this are v(x, y) = L, = a and centre %3D %3D sin () sin ("). nyTy a) Find an expression for the position operator in bra-ket notation. b) Find an expression for the momentum operator in bra-ket notation. c) The particle is initially in the state |) : for position and momentum to find...

  • 2. A particle of mass m in the infinite square well of width a at time...

    2. A particle of mass m in the infinite square well of width a at time 1 - 0 has wave function that is an equal weight mixture of the two lowest n= 1,2 energy stationary states: (x,0) - C[4,(x)+42(x)] (a) Normalize the wave function. Hints: 1. Exploit the orthonormality of W, 2. Recall that if a wave function is normalized at t = 0, it stays normalized. (b) Find '(x, t) and (x,1)1at a later time 1>0. Express Y*...

  • 1) Consider a particle with mass m confined to a one-dimensional infinite square well of length...

    1) Consider a particle with mass m confined to a one-dimensional infinite square well of length L. a) Using the time-independent Schrödinger equation, write down the wavefunction for the particle inside the well. b) Using the values of the wavefunction at the boundaries of the well, find the allowed values of the wavevector k. c) What are the allowed energy states En for the particle in this well? d) Normalize the wavefunction

  • Consider a particle of mass m that is described by the wave function (x, t) =...

    Consider a particle of mass m that is described by the wave function (x, t) = Ce~iwte-(x/l)2 where C and l are real and positive constants, with / being the characteristic length-scale in the problem Calculate the expectation values of position values of 2 and p2. and momentum p, as well as the expectation Find the standard deviations O and op. Are they consistent with the uncertainty principle? to be independent What should be the form of the potential energy...

  • A NON stationary state A particle of mass m is in an infinite square well potential of width L, a...

    A NON stationary state A particle of mass m is in an infinite square well potential of width L, as in McIntyre's section 5.4. Suppose we have an initial state vector lv(t -0) results from Mclntrye without re-deriving them, and you may use a computer for your math as long as you include your code in your solution A(3E1) 4iE2)). You may use E. (4 pts) Use a computer to plot this probability density at 4 times: t 0, t2...

  • 6. (Extra Credit: 6 Points) Consider two noninteracting particles of mass m in an infinite square well of width L. For the case with one particle in the single-particle state In) and the other in...

    6. (Extra Credit: 6 Points) Consider two noninteracting particles of mass m in an infinite square well of width L. For the case with one particle in the single-particle state In) and the other in the state k) (nメk), calculate the expectation value of the squared inter-particle spacing (71-72) , assuming (a) the particles are distinguishable, (b) the particles are identical in a symmetrical spatial state, and (c) the particles are identical in an anti-symmetric spatial state. Use Dirac notation...

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT