Question


4. A small block of mass m, is releases from rest at the top of a frictionless wedge of mass m2 6m,. The wedge is on a rictionless horizontal surface. When the block leaves the wedge, it has velocity Vitsr What is h, the height of the wedge? (Your answer should be in terms of Vtg and g.) tr 궈 fi
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
4. A small block of mass m, is releases from rest at the top of a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A small block of mass m1 is released from rest at the top of a curve-shaped,...

    A small block of mass m1 is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to become 2m1, what will be its speed when...

  • A small block of mass mi is released from rest at the top of a curve-shaped,...

    A small block of mass mi is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to become 2mi, what will be its speed when...

  • A small block of mass m, is released from rest at the top of a curve-shaped,...

    A small block of mass m, is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to become 2m, what will be its speed when...

  • A small block of mass m, is released from rest at the top of a curve-shaped,...

    A small block of mass m, is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to become 2m, what will be its speed when...

  • A small block of mass mi is released from rest at the top of a curve-shaped,...

    A small block of mass mi is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to become 2m, what will be its speed when...

  • A small block of mass mi is released from rest at the top of a curve-shaped,...

    A small block of mass mi is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to become 2mi, what will be its speed when...

  • please show details! A small block of mass mi is released from rest at the top...

    please show details! A small block of mass mi is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to become 2m, what will be...

  • can you show all work and coordinate system A small block of mass mi is released...

    can you show all work and coordinate system A small block of mass mi is released from rest at the top of a curve-shaped, frictionless wedge which sits on a frictionless horizontal surface as shown. The height of the wedge is h = 5 m. When the block leaves the wedge its velocity relative to the ground is measured to be 4.00 m/s to the right as shown in the figure. If the mass of the block is doubled to...

  • A block of mass m starts from rest and slides down from the top of a...

    A block of mass m starts from rest and slides down from the top of a wedge of height h and length d. The surface of the wedge forms an angle of ? with respect to the horizontal direction. The force of kinetic friction between the block and the wedge is f. How fast is the block traveling when it reaches the bottom of the wedge?

  • 4. (15 pts) A small block with a mass 'm', is released from rest at an...

    4. (15 pts) A small block with a mass 'm', is released from rest at an initial height 'h'. the mass slides down a ramp and then through a 'dip' with a given radius of curvature '. at the lowest point of the curve, the mass as a velocity of vc (velocity at curve). The mass continues back up and eventually slides over a friction patch of length 'd' when it eventually reaches an uncompressed spring. The mass compresses the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT