Question

! stance of the inductor and calcu- I In ull current; (b) the active , (C) the power factor. A non-inductive load takes a cur

Please show all calculations and steps. Thank you

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Please show all calculations and steps. Thank you ! stance of the inductor and calcu- I...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • An RL circuit is fabricated as shown with an unknown resistor and real inductor. They are...

    An RL circuit is fabricated as shown with an unknown resistor and real inductor. They are connected to a 12.0 V frequency generator that is set to 170. Hz. Two voltages are measured, VCA = 8.69 V and VBC = 6.59 V. What is the time constant of this circuit. (HINT: Use the phasor diagram shown to determine expressions for the phase constant, inductance and internal resistance of the inductor. Current is not shown since it is a series circuit.)...

  • A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50...

    A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50 uF, and a source with AV = 240 V operating at 50.0 Hz. The max maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. The inductive reactance depends on the value of the inductance and the frequency of the source. Q (b) Calculate the capacitive reactance. (c) Calculate the impedance. kn (d) Calculate the resistance in the circuit. kn. (e)...

  • You have a 250-Ω resistor and a 0.360-H inductor. Suppose you take the resistor and inductor...

    You have a 250-Ω resistor and a 0.360-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 31.0 V and an angular frequency of 200 rad/s. Q]Construct the phasor diagram. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. Include: 1) Vr (Resistor Voltage Phasor), 2) Vl (Inductor Voltage Phasor) and 3) I (Current Phasor)

  • An ideal inductor of inductance 7.7 mH is connected in parallel with a resistor of resistance...

    An ideal inductor of inductance 7.7 mH is connected in parallel with a resistor of resistance 141 Ω. This parallel combination is then connected in series with a second ideal inductor of inductance 4.5 mH. The sinusoidal voltage source for the circuit is 102 V, 71.6 Hz. Sketch the circuit and find the magnitude of the current, I, flowing through the resistor.

  • A series RLC circuit contains the following components. The resistance of the circuit is 200.0 D.,...

    A series RLC circuit contains the following components. The resistance of the circuit is 200.0 D., the inductance is 230.0 mH, and the capacitance is 70.0 uF. There is a source with DeltaVmax = 36.0 V operating at 60.0 Hz. Find the following: The inductive reactance The capacitance reactance The impedance The maximum current The phasor angle Phi If you could choose a different inductor is it possible that the voltage across the inductor be greater than the source voltage...

  • A load impedance consists of 25 ohm resistance in series with 38 ohm inductive reactance. The...

    A load impedance consists of 25 ohm resistance in series with 38 ohm inductive reactance. The load is connected across a 60 Hz, 240 V rms source. Use the voltage source as the reference (zero phase angle). a. Draw the circuit diagram. b. Calculate the value of inductance. c. Calculate the phasor value of current through the load impedance. d. Which leads, current or voltage? e. What is the phase angle between current and voltage? d. Calculate the phasor value...

  • A series RLC circuit has a capacitor with a capacitance of 36.0 μF , an inductor...

    A series RLC circuit has a capacitor with a capacitance of 36.0 μF , an inductor with an inductance of 0.700 H and a resistor with a resistance of 143 Ω. The circuit is attached to a source that has a rms voltage of 65.0 V and a frequency of 91.0 Hz. What is the peak current?

  • You have a 220 Ohm resistor, a 0.400 H inductor, and a 7.00 mu F capacitor....

    You have a 220 Ohm resistor, a 0.400 H inductor, and a 7.00 mu F capacitor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has voltage amplitude 30.0 V and an angular frequency of 250 rad/s. (a) What is the impedance of the circuit? Ohm (b) What is the current amplitude? A (c) What are the voltage amplitudes across the resistor and across the inductor? V (across the resistor) V (across...

  • Please show steps and answer. A circuit is constructed with two capacitors and an inductor as...

    Please show steps and answer. A circuit is constructed with two capacitors and an inductor as shown. The values for the capacitors are: C1 = 324 muF and C2 = 364 muF. The inductance is L = 212 mH. At time t =0, the current through the inductor has its maximum value IL(0) = 135 mA and it has the direction shown. 1) What is wo, the resonant frequency of this circuit? radians/s 2) What is Q1(t1), the charge on...

  • A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20...

    A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20 ur, and a source with ΔⅤmax-240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance 69.11 (b) Calculate the capacitive reactance 757.88 (c) Calculate the impedance 141 (d) Calculate the resistance in the circuit. 6.887 The impedance is a function of the resistance and the impedances of the inductor and capacitor. kΩ (e) Calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT