Question

(20 points) Consider the diagram below, where the radius of the disk is 0.75m and the mass of the block is 3.5kg. The cord attached to block has a negligible mass and is wrapped around the disk. The disk is suspended or mounted with a frictionless bearing through the center of the disk. The system is initially at rest and the mass descends 5.0m in 2.5s

A.  Determine the acceleration of the mass.

B. Find the tension in the cord

C.  Find the inertia of the disk.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A/ 2. 5 28 N TR au 1. 6

Add a comment
Know the answer?
Add Answer to:
A.  Determine the acceleration of the mass. B. Find the tension in the cord C.  Find the inertia...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An m = 13.6 kg mass is attached to a cord that is wrapped around a...

    An m = 13.6 kg mass is attached to a cord that is wrapped around a wheel of radius r = 11.3 cm (see the figure below). The acceleration of the mass down the frictionless incline is measured to be a = 1.98 m/s2. Assuming the axle of the wheel to be frictionless, and the angle to be theta= 33.0o determine the tension in the rope. Determine the moment of inertia of the wheel. Determine angular speed of the wheel...

  • 2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A str...

    2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the...

  • A wheel (radius = 0.30 m) is mounted on a frictionless, horizontal axis. A light cord...

    A wheel (radius = 0.30 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object. When released from rest the object falls with a downward acceleration of 5.0 m/sec. 111 TL LLLL 17. Find the tension on the cord. 18. Find the angular acceleration of the wheel. 19. Find the moment of inertia of the wheel. mg

  • In the figure, a very light rope is wrapped around a wheel o radius R =...

    In the figure, a very light rope is wrapped around a wheel o radius R = 2.0 m and does not slip. The wheel is mounted with frictionless bearings on an axle through Its center. A block of mass 14 kg is suspended from the end of the rope. When the system is released from rest it is observed that the block descends 10 m in 2.0 s. What is the moment of Inertia of the wheel?

  • A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around...

    A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.6 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...

  • A 12.0 kg object is attached to a cord that is wrapped around a wheel of...

    A 12.0 kg object is attached to a cord that is wrapped around a wheel of radius 10.0 cm. The acceleration of the object down the frictionless incline is measured to be 2.00 m/s2. Assuming the axis of the wheel to be frictionless, determine a) the tension in the rope, b) the moment of inertia of the wheel, and c) the angular speed of the wheel 2.00 s after it begins rotating, starting from rest. A 12.0 kg object is...

  • A uniform disc with mass M and radius R = 0.10 m is mounted on a...

    A uniform disc with mass M and radius R = 0.10 m is mounted on a frictionless, horizontal axle, as shown in the figure. The light cord wrapped around the disk is pulled so that it has a constant tension of T = 20.0 N. Starting from the rest, the disk performs a rotational motion with a constant angular acceleration a = 2 rad/s2 Find mass M of the disk. (Note that the moment of inertia of the disk is...

  • A 2.20 kg mass is attached to a light cord that is wrapped around a pulley...

    A 2.20 kg mass is attached to a light cord that is wrapped around a pulley of radius 4.35 cm, which turns with negligible friction. The mass falls at a constant acceleration of 2.05 m/s2. Find the moment of inertia of the pulley.

  • An m = 13.3 kg mass is attached to a cord that is wrapped around a...

    An m = 13.3 kg mass is attached to a cord that is wrapped around a wheel of radius r = 11.9 cm (see the figure below). The acceleration of the mass down the frictionless incline is measured to be a = 2.00 m/s2. Assuming the axle of the wheel to be frictionless, and the angle to be A = 33.2° determine the tension in the rope. Submit Answer Tries 0/8 Determine the moment of inertia of the wheel. Submit...

  • An m = 13.5kg mass is attached to a cord that is wrapped around a wheel...

    An m = 13.5kg mass is attached to a cord that is wrapped around a wheel of radius r = 10.5cm (see the figure below). The acceleration of the mass down the frictionless incline is measured to be a = 1.90m/s^2. Assuming the axle of the wheel to be frictionless, and the angle to be 8 = 35.0deg determine the tension in the rope. Submit Answer Tries 0/10 r m Determine the moment of inertia of the wheel. Submit Answer...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT