Question

Two spherical conductors are separated by a distance much larger than either of their radii. Sphere A has a radius of 46.5 cm

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

tin the when both the spheres are connected charge transfer takes place potential becomes equal. Also, the sum of charges rem

Add a comment
Know the answer?
Add Answer to:
Two spherical conductors are separated by a distance much larger than either of their radii. Sphere...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • two charged spherical conductors of radius R1=6cm and R2=2cm are separated by a distance much greater...

    two charged spherical conductors of radius R1=6cm and R2=2cm are separated by a distance much greater than 6cm and are connected by a long, thin conducting wire. a total charge Q=80nc is placed on one of the spheres. (a) what is the charge on each sphere? (b) what is the electric field near the surface of each sphere? (c) what is the electric potential of each sphere? (assume that the charge on the connecting wire is negligible)

  • Two spherical conductors of radii 11.0 cm and 15.0 cm are connected by a long thin...

    Two spherical conductors of radii 11.0 cm and 15.0 cm are connected by a long thin conducting wire. After reaching a steady state, the spheres have charges q1 and q2, respectively. If the wire is now cut, and the spheres are placed such that the center-to-center distance between them is 28.0 cm, the spheres repel each other with a force of 2.00 N. Remember: The force between charged spheres depends on the center to center distance. (a) What are q1...

  • Two isolated conducting spheres are separated by a large distance. Sphere 1 has a radius of...

    Two isolated conducting spheres are separated by a large distance. Sphere 1 has a radius of 20 cm and an initial charge 30 nC while Sphere 2 has a radius of 60 cm and an initial charge 70 nC. A very thin copper wire is now connected to the spheres to allow charge to flow between them. How much charge will be transferred from Sphere 2 to Sphere 1? (Note that the charge transferred can be positive, negative or zero.)

  • 4 Two spherical conductors (Homework #3) Two spherical conductors of different radii (Ri and R2) are...

    4 Two spherical conductors (Homework #3) Two spherical conductors of different radii (Ri and R2) are connected by along fine conducting wire. Let's assume Ri << R2, the smaller sphere carries the total charge 0 (with surface chargé density o) and the larger sphere carries the total charge Q2 (with surface charge density ). a) Remember that the potential is always constant on and in the conductor. Using th is fact, show that the ratio of the charge is given...

  • Two spherical conductors (Homework #3) Two spherical conductors of different radii (Ri and R:) are connected...

    Two spherical conductors (Homework #3) Two spherical conductors of different radii (Ri and R:) are connected by along fine conducting wire. Let's assume RiR, the smaller sphere carries the total charge Q (with surface charge density ) and the larger sphere carries the total charge a (with surface charge density a) Remember that the potential is always constant on and in the conductor. Using this fact, show that the ratio of the charge is given by R Q, R b)...

  • Consider two, conducting spheres, separated by a large distance. Sphere A has a radius of 0.85...

    Consider two, conducting spheres, separated by a large distance. Sphere A has a radius of 0.85 m and sphere B has a radius of 1.25 m. Sphere A is charged to a potential of -25 V and sphere B is charged to a potential of +18 V. The spheres are then connected by a thin, conducting wire. Part A) What is the initial charge of Sphere A, in Coulombs? Part B) What is the initial charge of Sphere B, in...

  • You have two metal spheres, one with twice the diameter than the other. The smaller sphere...

    You have two metal spheres, one with twice the diameter than the other. The smaller sphere initially has +8.0 nC of charge, while the larger one is uncharged. The two spheres are then connected together by a long, thin wire. What are the final charges on each sphere? Justify in words each relationship you use to solve this problem.

  • Two spherical conductors A (radius 2.0 cm) and B (radius 3.0 cm) have initial charges of...

    Two spherical conductors A (radius 2.0 cm) and B (radius 3.0 cm) have initial charges of +10 mC and-5.0 mC, respectively. The spheres are then connected by a long, thin conducting wire (a) What is the initial surface charge density on the surface of A? (b) What is the initial potential of A? (c) What is the charge of (i) A, (ii) B, at final equilibrium? (d) What is the potential of (i) A, ii) B, at final equilibrium?

  • 4. Two conducting spheres are far apart. The smaller sphere has radius R and carries a...

    4. Two conducting spheres are far apart. The smaller sphere has radius R and carries a total charge of Q. The larger sphere has a radius 2R and is neutral. After the two spheres are connected by a conducting wire, find the potential of each sphere (5points) the new charges on each sphere. (10 points) (iii) the electric field on each sphere due to its new charge (10 points)

  • 4. Two conducting spheres are far apart. The smaller sphere has radius R and carries a...

    4. Two conducting spheres are far apart. The smaller sphere has radius R and carries a total charge of Q. The larger sphere has a radius 2R and is neutral. After the two spheres are connected by a conducting wire, find (1) the potential of each sphere (5points) the new charges on each sphere. (10 points) the electric field on each sphere due to its new charge (10 points)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT