Question

Hoop 2. A small bead of mass M can slide without friction on a circular hoop that is in a vertical plane and has a radius L.

The subject is circular motion, thanks for your help!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

N coSO こ m N sine wTT mu2R ニ R こ472(LSineJ Sino tao CosO JT2 4TT2 L CocO Cos T 4 TT-L

Add a comment
Know the answer?
Add Answer to:
The subject is circular motion, thanks for your help! Hoop 2. A small bead of mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A small bead of mass m can slide without friction on a circular hoop that is...

    A small bead of mass m can slide without friction on a circular hoop that is in a vertical plane and has a radius R. The hoop rotates at a constant angular velocity ω about a vertical axis through the diameter of the hoop. Our goal is to find the angle β, as shown, such that the bead is in vertical equilibrium. We break the problem into several steps. a) Assume the bead is in vertical equilibrium and does not...

  • Question 40 Not yet answered A small bead can slide without friction on a circular hoop...

    Question 40 Not yet answered A small bead can slide without friction on a circular hoop that is in the vertical plane and has a radius of R = 1.4 m. The hoop rotates at a constant rate of 5.4 rev/s about a vertical axis as shown. The angle B at which the bead does not move with respect to the hoop is such that Marked out of 2.00 P Flag question cross out Select one: O a. cosß =...

  • Problem 5 (15 points) A small bead can slide without friction on a circular hoop that...

    Problem 5 (15 points) A small bead can slide without friction on a circular hoop that is a vertical plane and has a radius of 0.100 m. The hoop rotates at a constant rate of 4.00 rev/sec (recall 1 rev = 2π rad) about a vertical diameter as shown in the figure below (a) Find the angle β at which the bead is in vertical equilibrium. (It has a radial acceleration toward the axis.) (b) Is it possible for the...

  • A single bead of mass m can slide with negligible friction on a stiff wire that...

    A single bead of mass m can slide with negligible friction on a stiff wire that has been bent into a circular loop of radius R = 0.155m. The circle is always in a vertical plane and rotates steadily about its vertical diameter with a period of T = 0.420s. The position of the bead is described by the angle (theta) that the radial line, from the center of the loop to the bead, makes with the vertical. Hint: The...

  • Problem 2 (25 pts) ● A new child's toy is made of a circular hoop of...

    Problem 2 (25 pts) ● A new child's toy is made of a circular hoop of radius 25 cm and has a small bead of mass 20 grams attached to the hoop. The bead is free to move around the hoop without any friction. The hoop is oriented vertically and spins around at 10 revolutions per second about a pole which passes through the center of the circular hoop. As the hoop is rotating the bead slides up the hoop...

  • Circular motion, vertical surface with kinetic friction: A small block of mass 2.0 kg slides on...

    Circular motion, vertical surface with kinetic friction: A small block of mass 2.0 kg slides on a horizontal frictionless surface as it travels around the inside of a hoop of radius R 0.50 m. A view from above is shown. The coefficient of friction between the block and the hoop wall is 0.20. Therefore, the block is slowing down. a) Draw a free body diagram for the block in the position shown (you do not need to include forces perpendicular...

  • A small electrically charged bead with the mass m and charge Q can slide on a...

    A small electrically charged bead with the mass m and charge Q can slide on a circular insulating string without friction. The radius of the circle is r. A point-like electric dipole is at the center of the circle with the dipole moment P lying in the plane of the circle. Initially the bead is at an angle θ = 플 +6, where δ is infinitely small, as shown schematically in the figure below. Figure 3: Bead on a string...

  • Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a...

    Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a force of magnitude 4 N that makes an angle of ф-30 with the horizontal surface. If the coefficient of kinetic friction between block and surface is 0.5, what is the resulting acceleration of the block along the surface Figure 1: Block on incline. 2. A block of mass m - 5 kg is subject to a force of magnitude 20 N that makes an...

  • A bead of mass m slides frictionlessly on a circle of wire with radius R. The...

    A bead of mass m slides frictionlessly on a circle of wire with radius R. The circle stands up in a vertical plane and rotates about the z-axis with constant angular velocity . Write down the Lagrangian. Find the equations of motion. For an angular velocity greater than some critical angular velocity , the bead will experience small oscillations about some stable equilibrium point . Find and (). We were unable to transcribe this imageWe were unable to transcribe this...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT