Question

Instructions. For each question, show all work leading to an answer and simplify as much as reasonably possible. 1. An amusement-park ride consists of a large vertical cylinder of radius R. The cylinder spins about its axis fast enough such that any person inside is pinned against the wall when the floor drops away. Let p, be the coefficient of static friction between person and wall. Find the minimum speed that the cylinder wall must have to keep a person from falling 2. Some movers horizontally push a 46.0-kg crate 10.3 m across a rough horizontal floor without accel- eration. The coefficient of kinetic friction between crate and floor is 0.50. How much work did the movers do?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Instructions. For each question, show all work leading to an answer and simplify as much as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away. If the coefficient of static friction between the person and the wall is 0.563 and the radius of the cylinder is 8.87 m, what is the minimum tangential speed necessary to keep a person from falling? ____ m/s What is the maximum period of rotation to keep a...

  • A certain ride at an amusement park consists of a hollow cylinder that can rotate at...

    A certain ride at an amusement park consists of a hollow cylinder that can rotate at high speeds. The floor can then be dropped with the people staying pinned to the sides of the cylinder. Terry the Mighty Iguana climbs inside the cylinder and the ride operator turns it on. The cylinder has a radius of 6 meters and a coefficient of friction between the cylinder wall and the Terry is u=0.67 a. how much friction is required to keep...

  • 11. “The Rotor”. The amusement park ride known as “the rotor”, essentially a large hollow cylinder,...

    11. “The Rotor”. The amusement park ride known as “the rotor”, essentially a large hollow cylinder, rotates rapidly about a central axis. Riders stand on the floor up against the wall of this ride before it begins to rotate. Once the ride starts, all riders, the wall, and floor begin to rotate rapidly and undergo uniform circular motion. When the rotation speeds reaches a certain value, the floors fall away and the riders are held pinned against the wall where...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s 2 . Given g = 9.8 m/s 2 , the coefficient µ = 0.564 of static friction between a person and the wall, and the radius of the cylinder R = 4.9 m. For simplicity, neglect the...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s2. Given g = 9.8 m/s2, the coefficient μ = 0.569 of static friction between a person and the wall, and the radius of the cylinder R = 5.4 m. For simplicity, neglect the person’s depth and assume...

  • How much work did the movers do (horizontally) pushing a 150-kg crate 10.5 m across a...

    How much work did the movers do (horizontally) pushing a 150-kg crate 10.5 m across a rough floor without acceleration, if the effective coefficient of friction was 0.70? Express your answer using two significant figures. W=______J

  • Instructions. For each question, show all work leading to an answer and simplify as much as...

    Instructions. For each question, show all work leading to an answer and simplify as much as reasonably possible. 1. A 3.00-kg block starts from rest at the top of a ramp having an inclination of 30.0°. The block slides a distance of 2.00 m down the ramp in 1.50 s. Neglect air resistance. (a) Find the magnitude of the block's constant acceleration. (b) Find the coefficient of kinetic frictioti between block and ramp. 2. A small, flat cushion of mass...

  • Need help solving Instructions. For each question, show all work leading to an answer and simplify...

    Need help solving Instructions. For each question, show all work leading to an answer and simplify as much as reasonably possible. 1. A 3.00-kg block starts from rest at the top of a ramp having an inclination of 30.0°. The block slides a distance of 2.00 m down the ramp in 1.50 s. Neglect air resistance (a) Find the magnitude of the block's constant acceleration (b) Find the coefficient of kinetic friction between block and ramp 2. A sal, flat...

  • An amusement park ride consists of a rotating vertical cylinder with rough canvas walls. The floor...

    An amusement park ride consists of a rotating vertical cylinder with rough canvas walls. The floor is initially about halfway up the cylinder wall as shown. After the rider has entered and the cylinder is rotating sufficiently fast, the floor is dropped down, , yet the rider does not slide down. The rider has mass of 50 kg. The diameter of the cylinder is 6.5 meters. The coefficient of static friction between the rider and wall of the cylinder is...

  • 001 (part 1 of 2) 10.0 points An amusement park ride consists of a large vertical...

    001 (part 1 of 2) 10.0 points An amusement park ride consists of a large vertical cylinder that spins about enough that any person inside is held up against the wall when the floor drops away its axis fast 6.87 m What is the minimum angular velocity wmin needed to keep the person from slipping downward? The acceleration due to gravity is 9.8 m/s2, the coefficient of static friction be- tween the person and the wall is 0.77, and the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT