Question

8. The magnetic field shown in Figure P20.61 has a uniform magnitude of 25.0 mT directed into the paper. The initial diameter of the kink is 2.00 cm. (a) The wire is quickly pulled taut, and the kink shrinks to a diameter of zero in 50.0 ms. Determine the average voltage induced between endpoints A and B. Include the polarity. 100 mT in 4.00 x 10 s. Determine the average voltage across terminals A and B, including polarity, during this period. (12 Marks) (b) Suppose the kink is undisturbed, but the magnetic field increases to xXXx 2.00 сп
6. A proton moves perpendicularly to a uniform magnetic field B at 1.0 x10 m/s and exhibits an acceleration of 2.0x1013 m/s,n the x-direction when its velocity is in the z -direction. Determine the magnitude and direction of the field (11 marks)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Vnsinduce S O 2 2 dne Volts 50 10-3 0.157 m V ough the loop du ceasi applied magnet ied ie inside the page) n ondel

Add a comment
Know the answer?
Add Answer to:
8. The magnetic field shown in Figure P20.61 has a uniform magnitude of 25.0 mT directed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3·The magnetic field shown in Figure 4 has a uniform magnitude of 25.0 mT directed into...

    3·The magnetic field shown in Figure 4 has a uniform magnitude of 25.0 mT directed into the paper. The initial diameter of the kink is 2.00 cm. (a) The wire is quickly pulled taut, and the kink shrinks to a diameter of zero in 50.0 ms. Determine the average voltage induced between endpoints A and B. Include the polarity. (b) Suppose the kink is undisturbed, but the magnetic field increases to 100 mT in 4.00 x10 s. Determine the average...

  • 3. The magnetic field shown in Figure 4 has a uniform magnitude of 25.0 mT directed...

    3. The magnetic field shown in Figure 4 has a uniform magnitude of 25.0 mT directed into the paper. The initial diameter of the kink is 2.00 em. (a) The wire is quickly pulled taut, and the kink shrinks to a diameter of zero in 50.0 ms. Determine the average voltage induced between endpoints A and B. Include the polarity. (b) Suppose the kink is undisturbed, but the magnetic field increases to 100 mT in 4.00 x 103 s. Determine...

  • magnetic field shown in Figure 4 has a uniform magnitude of 25.0 mT paper. The initial...

    magnetic field shown in Figure 4 has a uniform magnitude of 25.0 mT paper. The initial diameter of the kink is 2.00 cm. (a) The wire is 3. The directed into the quickly pulled taut, and the kink shrinks to a diameter of zero in 50.0 ms. Determine the average voltage induced between endpoints A and B. Include the polarity. (b) Suppose the kink is undisturbed, but the magnetic field increases to 100 mT in 4.00 x10" s. Determine the...

  • 3. The magnetic field shown in Figure 4 has a uniform magnitude of 25.0 miT directed...

    3. The magnetic field shown in Figure 4 has a uniform magnitude of 25.0 miT directed into the paper. The initial diameter of the kink is 2.00 em. (a) The wire s quickly pulled taut, and the kink shrinks to a diameter of zero in 50,.0 ms. Deen no the average voltage induced between endpoints A and B. Include the Suppose the kink is undisturbed, but the magnetic field increases y x103 s. Determine the during this period. (15) the...

  • 3. The magnetic field shown in Figure 4 directed into the paper. The initial diameter quickly...

    3. The magnetic field shown in Figure 4 directed into the paper. The initial diameter quickly pulled taut, and the kink shrinks to f the kinkc is magnitude igure 4 the average voltage induced between endadiameter ofis 2.00cmde of 25.0 mT nk is undisturbed, but the magnetic field increases to a diameter of zero in 50.0 ms. Determine pulled a induced between endpoints 4 and B. Include the polarity. (b) mT in 4.00 the ki average voltage across terminals A...

  • 4. A 2.00 C charged 1.00 g cork ball is suspended vertically on a 0.500 m...

    4. A 2.00 C charged 1.00 g cork ball is suspended vertically on a 0.500 m long light string in the presence of a uniform downward-directed electric field of magnitude E-1.00x105 N/C. If the ball is displaced slightly from the vertical, it oscillates like a simple pendulum. (a) Determine the period of the ball's oscillation. (b) Should gravity be included in the calculation for part (a)? Explain. (15) 3. The magnetic field shown in Figure 4 directed into the paper....

  • The right edge of the circuit in the figure extends into a 50 mT uniform magnetic field.

    The right edge of the circuit in the figure extends into a 50 mT uniform magnetic field.What are the magnitude and direction of the net force on the circuit?leftrightupdown

  • Magnetic field region There is a uniform magnetic field of magnitude B= 1.6T and directed out...

    Magnetic field region There is a uniform magnetic field of magnitude B= 1.6T and directed out of the plane of the screen in the region shown. Outside this region the magnetic field is zero. A rectangular loop o.2 mby 0.6 m and of resistance 42 and mass 8 grams is being pulled into the magnetic field by an external force as shown. - What is the direction (CW or CCW) of the current induced in the loop? Calculate the magnitude...

  • An electron moves through a region with a uniform magnetic field of unknown magnitude directed in...

    An electron moves through a region with a uniform magnetic field of unknown magnitude directed in the +y direction At the instant that the electron is moving in the +z direction with a velocity of 2.86e6 m/s, it experiences a magnetic force of 1.24 pN in the +x direction. Calculate the magnitude of the magnetic field

  • An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude o...

    An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.12 mT. If the speed of the election is 1.63 x 107 m/s determine the followi (a) the radius of the circular path cm (b) the time interval required to complete one revolution An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.12 mT. If the speed of the election is 1.63 x 107 m/s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT