Question

Based on the energy levels given by ENL = N + hf+ BL L + 1 calculate the energies of the possible emitted photons consider the case for arbitrary Land and consider fan 2 B to be known quantities. Use the following as necessary: N, h, f, B, L. Do not substitute numerical values; use variables only.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(1) The mathematical expression for the Energy level of emitted photons is, EN -=[N+%) hf +BL(2+1) = Energies of possible emi

Add a comment
Know the answer?
Add Answer to:
Based on the energy levels given by ENL = N + hf+ BL L + 1...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A system consists of a vertical spring with force constant k = 1,130 N/m, length L...

    A system consists of a vertical spring with force constant k = 1,130 N/m, length L = 1.45 m, and object of mass m = 5.05 kg attached to the end (see figure). The object is placed at the level of the point of attachment with the spring unstretched, at position yi = L, and then it is released so that it swings like a pendulum. (a) Write Newton's second law symbolically for the system as the object passes through...

  • Please answer all parts of the problem and e A system consists of a vertical spring...

    Please answer all parts of the problem and e A system consists of a vertical spring with force constant k = 1,060 N/m, length L = 1.25 m, and object of mass m = 5.70 kg attached to the end (see figure). The object is placed at the level of the point of attachment with the spring unstretched, at position yi = L, and then it is released so that it swings like a pendulum. A system consists of a...

  • 1 Particle in a Box with a Bump (based on B&J 4.11) Consider a particle of...

    1 Particle in a Box with a Bump (based on B&J 4.11) Consider a particle of mass m in a 1-D double well with potential given by Vo, 05\x\<b V(x) = { 0, b<\x<c 100, [x]>c . We will study the lowest energy states, for which 0 <E<V, corresponding to tunnelling between the two wells. (a) Write down the time-independent Schödinger equation in the three regions -c<x<-b, –b< <b, and b< I< c. Write down the most general wavefunction solution...

  • please answer quesiton 1,1a,1b 1. Consider the following energy levels of a hypothetical atom: E -1.0...

    please answer quesiton 1,1a,1b 1. Consider the following energy levels of a hypothetical atom: E -1.0 x 10-19 -5.0 x 10-19 _-10 x 10-19 _-15 x 10-19 a. What is the wavelength of the photon needed to excite an electron from E, to Ex? (Use the Energies given in the problem) b. When an electron drops from the E3 to the E, level, the atom is said to undergo emission. Calculate the wavelength of the photon emitted in this process.

  • 3 (b) The energy of a Bohr atom in the n-th excited state is given by the formula E--a2mc2 2,7, where α-e2/(4πέρ,10hc)-1 /137, m is the electron mass and e denotes the electron electric charge. i) Wh...

    3 (b) The energy of a Bohr atom in the n-th excited state is given by the formula E--a2mc2 2,7, where α-e2/(4πέρ,10hc)-1 /137, m is the electron mass and e denotes the electron electric charge. i) Why is the total energy negative? Explain briefly your answer. ii) What is the radius of the electron in the n-th excited state in the Bohr atom? To answer that correctly follow the next steps Use Bohr's angular momentum quantization principle to obtain an...

  • Question 5 The rotational energy levels of a diatomic molecule are given by E,= BJ(J+1) with...

    Question 5 The rotational energy levels of a diatomic molecule are given by E,= BJ(J+1) with B the rotational constant equal to 8.02 cm Each level is (2) +1)-times degenerate. (wavenumber units) in the present case (a) Calculate the energy (in wavenumber units) and the statistical weight (degeneracy) of the levels with J =0,1,2. Sketch your results on an energy level diagram. (4 marks) (b) The characteristic rotational temperature is defined as where k, is the Boltzmann constant. Calculate the...

  • (3)Consider an atomic p-electron (-1) which is governed by the Hamiltonian H-Ho +Hl,where Ho=a L,.bhand H,-./2...

    (3)Consider an atomic p-electron (-1) which is governed by the Hamiltonian H-Ho +Hl,where Ho=a L,.bhand H,-./2 where a,bandcare nonzero real numbers with a 굶b. (a) Determine the Hamiltonian in Matrix form for a basis | I,m > with 1-land ,n = 0,±1. You may use the formula (b)Treat H,as a perturbation of Ho. What are the energy eigenvalues and eigenfunctions of the unperturbed problem? (c)Assume as>lcl and bsslcl. Use perturbation theory to calculate eigenvalues of H to first non trivial...

  • 2. Consider an isolated system consisting of a large number N of very weakly interacting localized...

    2. Consider an isolated system consisting of a large number N of very weakly interacting localized particles of spin 1 2. Each particle has a rnagnetic mioment μ which can point parallel or anti-parallel to an applied field H. The energy E of the systern is then E =-(ni-n2):1H, antiparallel to H. (a) Consider the energy range between E and E+δΕ where δΕ < E but is microscopically large so that δΕ μΗ. What is the total number of states...

  • Question # 1: Find the unit of energy in the energy expression of a free particle...

    Question # 1: Find the unit of energy in the energy expression of a free particle in 1-D box: Question # 2: A proton in a box is in a state n = 5 falls to a state n = 4 and loose energy with a wavelength of 2000 nm, what is the length of the box? (answer: 4 x 10 m) Question # 3: a. Consider an electron confined to move in an atom in one dimension over a...

  • 1. Titanium metal requires a photon with a minimum energy of 6.94 x 10- J to...

    1. Titanium metal requires a photon with a minimum energy of 6.94 x 10- J to emit electrons. a. What is the minimum frequency of light necessary to emit electrons from titanium via the photoelectric effect? b. What is the wavelength of this light? c Is it possible to eject electrons from titanium metal using visible light? 2. Calculate the energies of an electron in the hydrogen atom when n=2 and when n=6. Calculate the wavelength of the radiation released...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT