Question

for b partProblem 2. The following non-linear system is given: y} = 11y2 + x3 - 1 yż = x2y1 +z1-1 (a) Determine if this system is solvafor b part

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution :

Given that,

Statement :Let\ f:R^{n+ m}\rightarrow R^m be a continuously differentiable function,

Let R^{ n+m} have coordinates (x,y)

Fix a point (a, b) = (a1, ...., An, 61, ...., bn) with fla, b) = 0 ,where 0\epsilon\ R^m is the zero vector.

If the Jacobian matrix J_{fy}(a,b)=[(\frac{\partial f_i }{\partial y_j})(a,b)] is invertible, thten there exists an open set U of RK containing a such that there exixts a unique continuosly differentiable function g:U\rightarrow R^m such\ that g(a)=b\ and\ f(x,g(x))=0\ for\ all\ x\epsilon U

-----------------------------------------------------------------------------------------------------------

here

n=2,m=2,(x,y)\epsilon \mathbb{R}^4,with\ X=(x_1,x_2),y=(y_1,y_2)\epsilon \mathbb{R}^2,z_1=(1,1,1,1)

with\ z_1=(a,b),a=(1,1)\epsilon \mathbb{R}^2,b=(1,1\epsilon \mathbb{R}^2)

f:R^{2+2}\rightarrow R^2,f(x_1,x_2,y_1,y_2)=(x_1y_2+x_2^2-y_1^3-1,x_2y_1+x_1^2-y_2^3-1)\Rightarrow f_1=x_1y_2+x_2^2-y_1^3-1,f_2=x_2y_1+x_1^2-y_2^3-1

Fix a point(1,1,1,1)

a=(1,1)\epsilon \mathbb{R}^2,b=(1,1)\epsilon \mathbb{R}^2,f(1,1,1,1)=(0,0)

J_{fy}=\begin{bmatrix} \frac{\partial f_1}{\partial y_1}&\frac{\partial f_1}{\partial y_2} \\ \frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} \end{bmatrix}

\frac{\partial f_1}{\partial y_1}=-3y_1^2,\ \frac{\partial f_1}{\partial y_2}=x_1

\frac{\partial f_2}{\partial y_1}=x_2,\ \frac{\partial f_2}{\partial y_2}=-3y_2^2

det(J_{fy})=9y_1^2y_2^2-x_1x_2

det(J_{fy}(1,1,1,1))=8\neq 0

\therefore j_{fy}(1,1,1,1)is\ invertible.

by implicit function therom,there exixts an open set U of \mathbb{R}

containing (1,1) such tha there exixts a unique continuously differentiable function \varphi :U\rightarrow R^2 such\ that\ \varphi (1,1)=(1,1)

\varphi :U\rightarrow R^2\Rightarrow \varphi (x_1,x_2)=(y_1(x_1,x_2),y_2(x_1,x_2))) with y(1,1)=1,z(1,1)=1 that is, there exixst a differenable functions y(x_1,x_2),z(x_1,x_2) in the neighbourthood of(1,1) so that y(1,1)=1, z(1,1)=1.

-----------------------------------------------------------------------------------------------------------

(b.)

also we have \frac{\partial \varphi }{\partial x}=-[J_{fy}(x_1,x_2,\varphi (x_1,x_2))]_{2\times 2}^{-1}[\frac{\partial f}{\partial x}(x_1,x_2,\varphi (x_1,x_2))]_{2\times 2}

\frac{\partial f}{\partial x}(1,1)=-[J_{fy}(1,1,1,1)]_{2\times 2}^{-1}[\frac{\partial f}{\partial x}(1,1,1,1)]_{2\times 2}

J_{fy}=\begin{bmatrix} -3y_1^2 &x_1 \\ x_2 &-3y_2^2 \end{bmatrix}

\Rightarrow J_{fy}(1,1,1,1)=\begin{bmatrix} -3 &_1 \\ _1 &-3 \end{bmatrix}

[J_{fy}(1,1,1,1)]_{}{2\times 2}^{-1}=\frac{1}{8}\begin{bmatrix} -3 &-1 \\ -1& -3 \end{bmatrix}

\frac{\partial f}{\partial x}=\begin{vmatrix} \frac{\partial f_1}{\partial x_1} &\frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} &\frac{\partial f_2}{\partial x_2} \end{vmatrix}

=\bigl(\begin{smallmatrix} y_2 &2x_2 \\ x_1&y_1 \end{smallmatrix}\bigr)

\frac{\partial f}{\partial x}=\bigl(\begin{smallmatrix} 1 &2 \\ 2 & 1 \end{smallmatrix}\bigr)

\frac{\partial \varphi }{\partial x}(1,1)=-\frac{1}{8}\bigl(\begin{smallmatrix} -3 &-1 \\ -1 & -3 \end{smallmatrix}\bigr)\bigl(\begin{smallmatrix} 1 &2 \\ 2 & 1 \end{smallmatrix}\bigr)

=-\frac{1}{8}\bigl(\begin{smallmatrix} -5 &-7 \\ -7 & -5 \end{smallmatrix}\bigr)

Add a comment
Know the answer?
Add Answer to:
for b partfor b part Problem 2. The following non-linear system is given: y} = 11y2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT