Question

Problem 2. Determine whether the following signals are power or energy signals, or neither. Justify your answers. a) x(t)-Asint -00<t<oo b) x(t) = r(1)-r(1-1) c) x(t)-tu(t) d) x(t)- Aexp(bt) , b>0

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

a)
  x(t)=A\sin t
So,
  E=\lim_{T\rightarrow \infty}\int_{-T}^{T}|x(t)|^2~dt=A^2\lim_{T\rightarrow \infty}\int_{-T}^{T}\sin^2 t~dt
   \Rightarrow E=\frac{A^2}{2}\lim_{T\rightarrow \infty}\int_{-T}^{T}(1-\cos 2t)~dt
   \Rightarrow E={A^2}\lim_{T\rightarrow \infty}\int_{0}^{T}(1-\cos 2t)~dt
  \Rightarrow E={A^2}\lim_{T\rightarrow \infty}\left [ t-\frac{\sin 2t}{2} \right ]_{0}^{T}
  \Rightarrow E={A^2}\lim_{T\rightarrow \infty}\left [ T-\frac{\sin 2T}{2} \right ]
  \Rightarrow E\rightarrow \infty
And
  P=\lim_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}|x(t)|^2~dt=A^2\frac{1}{2T}\lim_{T\rightarrow \infty}\int_{-T}^{T}\sin^2 t~dt
  \Rightarrow P=\frac{A^2}{2}\lim_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}(1-\cos 2t)~dt
  (1 - cos 2t) dt
  \Rightarrow P={A^2}\lim_{T\rightarrow \infty}\frac{1}{2T}\left [ t-\frac{\sin 2t}{2} \right ]_{0}^{T}
  \Rightarrow P={A^2}\lim_{T\rightarrow \infty}\frac{1}{2T}\left [ T-\frac{\sin 2T}{2} \right ]
  \Rightarrow P=\frac{A^2}{2}\lim_{T\rightarrow \infty}\left [ 1-\frac{\sin 2T}{2T} \right ]
  \Rightarrow P=\frac{A^2}{2}<\infty
So, it is a power signal.
b)
  
   x(t)=r(t)-r(t-1)
where,
  r(t)=\left\{\begin{matrix} t, &t\geq 0 \\ 0, & t<0 \end{matrix}\right.
So,
  x(t)=\left\{\begin{matrix} 1, & t\geq 1\\ t, & 0\leq t < 1 \\ 0, & t<0 \end{matrix}\right.
So,
  E=\lim_{T\rightarrow \infty}\int_{-T}^{T}|x(t)|^2~dt=\lim_{T\rightarrow \infty}\left [\int_{0}^{1}t^2~dt +\int_{1}^{T}dt\right ]
  \Rightarrow E=\lim_{T\rightarrow \infty}\left [\frac{1}{3} +T-1\right ]
  \Rightarrow E=\lim_{T\rightarrow \infty}\left [T-\frac{2}{3} \right ]\rightarrow \infty
And
P= lim t2 dt + / dt lim_
\Rightarrow P=\lim_{T\rightarrow \infty}\frac{1}{2T}\left [\frac{1}{3} +T-1\right ]
  \Rightarrow P=\lim_{T\rightarrow \infty}\frac{1}{2T}\left [T-\frac{2}{3} \right ]=\lim_{T\rightarrow \infty}\left [\frac{1}{2}-\frac{1}{3T} \right ]=\frac{1}{2}<\infty
So, this is again a power signal.
  c)
   r(t)-tut)
where,
  1, t20
So,
E=\lim_{T\rightarrow \infty}\int_{-T}^{T}|x(t)|^2~dt=\lim_{T\rightarrow \infty}\int_{0}^{T}t^2~dt
   /3 E= lim
  \Rightarrow E=\lim_{T\rightarrow \infty}\left [ \frac{T^3}{3} \right ]\rightarrow \infty
And
P= lim r(t)2 dt lim lim_
\Rightarrow P=\lim_{T\rightarrow \infty}\frac{1}{2T}\left [ \frac{t^3}{3} \right ]_{0}^{T}
  \Rightarrow P=\lim_{T\rightarrow \infty}\frac{T^3}{6T}
  \Rightarrow P=\lim_{T\rightarrow \infty}\frac{T^2}{6}\rightarrow \infty
This signal is neither power signal nor energy signal.
d)
  x(t)=Ae^{bt}
so,
  E=\lim_{T\rightarrow \infty}\int_{-T}^{T}|x(t)|^2~dt=A^2\lim_{T\rightarrow \infty}\int_{-T}^{T}e^{2bt}~dt
  \Rightarrow E=A^2\lim_{T\rightarrow \infty}\left [ \frac{e^{2bt}}{2b} \right ]_{-T}^{T}
  \Rightarrow E=A^2\lim_{T\rightarrow \infty}\left [ \frac{e^{2bT}-e^{-2bT}}{2b} \right ]\rightarrow \infty
And
  P=\lim_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}|x(t)|^2~dt=A^2\lim_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}e^{2bt}~dt
\Rightarrow P=A^2\lim_{T\rightarrow \infty}\frac{1}{2T}\left [ \frac{e^{2bt}}{2b} \right ]_{-T}^{T}
\Rightarrow P=A^2\lim_{T\rightarrow \infty}\frac{1}{2T}\left [ \frac{e^{2bT}-e^{-2bT}}{2b} \right ]
  \Rightarrow P=\frac{A^2}{2}\lim_{T\rightarrow \infty}\frac{e^{2bT}}{2bT}\rightarrow \infty
This is also neither power signal nor energy signal.

Add a comment
Know the answer?
Add Answer to:
Problem 2. Determine whether the following signals are power or energy signals, or neither. Justify your...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT