Question

Part II: Design of Butterworth Filters Butterworth filters, described in a paper by Stephen Butterworth in 1930, are widely u1. Determine analytically the locations of the 2N poles of H(S)H(-s). Hint: Set the denominator of H(s)H(-) equal to 0. Notin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Question (1)

H(s)H-s)= 2N 1+

So the poles will be at

2N S 1+ = 0 jac

2N S = -1 jwc.

-1 = ei(n+2nk) k 1,2,3,4,5,....

2N = ei(x+2nk) jae

1а+2лк) 2N е

j(+2k s j.wc.e 2N

So the poles are at

j(+2nk) k 1,2,3,4,5,6,....... S we.j.e 2N

Question (2)

N = 1

So, there will be two poles of H(s) H(-s)

j(T+2Tk) k 1,2 S = wej.e

j(+2n j(+2TX2) S1wej.e S2 = wj.e 2

ј3л Ј5л 1 = wej.e 2 S2 = wej.e 2

1Зд е 2 Зп. j. sin = 0 + j(-1) =-j 2 cos 2

5T = COS 2 j5T e 2 = 0 + j(1) j

s1 = wj.(-) S2 = w.j.(j)

S2 =-we we

So the pole which will result in a stable and causal filter will be S2. Its because for a stable system, poles should lie in the left half of the s plane

So

К H(s) с

Given H(0) =1

So

К H(0) 1

К - Ф.

So the transfer function of the first order Butterworth filter will be

H(s) s+w

Question (3)

10т rad/s

N = 1

So the transfer function of the filter will be

10л H(s) s+ 10л

The MATLAB Code

clc;
clear all;
close all;

wc = 10*pi;

b = [wc];
a = [1 wc];

w = linspace(0,1000,100);

H = freqs(b, a, w);

magH = abs(H);
HdB = 20*log10(magH);

figure
plot(w, magH, 'linewidth', 2);
grid on;
xlabel('\omega (rad/s)');
ylabel('|H(\omega)|');
title('Magnitude Response of the Filter');

figure
plot(w, HdB, 'linewidth', 2);
grid on;
xlabel('\omega (rad/s)');
ylabel('20.log(|H(\omega)|) (dB)');
title('Magnitude Response of the Filter[Magnitude in db]');

The plots obtained

Magnitude Response of the Filter 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 100 200 300 400 500 600 700 800 900 1000 w (rad/s) CO (m

Magnitude Response ofthe Filter[Magnitude in db] O -5 -10 -15 -20 -25 -30 -35 1000 100 200 300 400 500 600 700 800 900 w (rad

Question (4)

The poles are given by

j(+2nk) k 1,2,3, ... (2N) S we.j.e 2N

N = 3

So

j(+2mk) k 1,2, 3, 4,5,6 S we.j.e 6

j(+2m) 6 we.j.e = wc.j.e 2

e(cos ).sin G))

1 = cj.(0 +j(1))

we.j.j

S1

5(л+4п) Ј5л = @c.j.e 6 S2w.j.e 6

5T (cos j. sin 6 S2 6 Ln

3 1 S2 2

1 -je S2

= @c.j.e 6 S3w.j.e 6

3j.cos) +j. sin ()) j. sin COs

3 = @e-j. 1 S3 2

1 3 j 2

j(+8) јЗл = @c. j.e_2 we.j.e S4 6

Зп j.sin (cos S4

S4 wj. (0-1)

SA s

j(+10 j11T = @e.j.e 6 6

11T 117T e(cos( j. sin 6 6

V3 2 2

V3 1 wej.w 2

j(+12T) j13m = @e.j.e 6 Sw.j.e 6

13T 13 e-1-(cos j. sin 6 S6 6

S6 = @e.j. 2

V3 1 +j.we 2 S6

So the poles are at

S1

V3 1 S2 2 2

V3 1 -jw $32jc-

S4

V3 1 wej.w 2

V3 1 +j.we 2 S6

Let us consider that the cut off frequency is w 1 rad/s

Then the poles are

= -1

3 S2 2 2

3 S3 2 2

= 1 S4

3- 1 2

3 1 j. 2 2 S6

MATLAB Code

clc;
clear all;
close all;

s = tf('s');

sp = [-1, -1/2-j*sqrt(3)/2, 1/2-j*sqrt(3)/2, 1, 1/2+j*sqrt(3)/2, -1/2+j*sqrt(3)/2];
b = 1;

a = (s - sp(1))*(s - sp(2))*(s - sp(3))*(s - sp(4))*(s - sp(5))*(s - sp(6));

sys = b/a;

pzplot(sys);

The pole zero plot obtained

Pole-Zero Map 1 X X 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 X X 1 -1 0.5 1.5 -0.5 0 1 Real Axis (seconds) CO Co Imaginary Axis

Add a comment
Know the answer?
Add Answer to:
Part II: Design of Butterworth Filters Butterworth filters, described in a paper by Stephen Butterworth in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT