Question

4. A student (mass= 60.0 kg) is standing on a rotating platform (mass= 200 kg). Treat...

4. A student (mass= 60.0 kg) is standing on a rotating platform (mass= 200 kg). Treat the platform as a uniform cylinder with a radius 1.50 m, and treat the student as a point object. The student is standing right on the edge. The platform starts at rest. A friend then exerts a constant torque on the platform. This causes the angular speed of the platform to increase to 0.8 rad/s over a time of 5.0 s, at which point in the time the friend stops pushing the platform.

a) What is the moment of inertia of the combination of the platform and the student while the student is standing at the edge of the platform?

b) What constant torque must the friend apply in order to get the platform moving at the angular speed described above?

c) After the friend stops pushing, the student walks towards the center of the platform and stops at 1.0 m distance from the center. What is the new angular speed of the platform?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
4. A student (mass= 60.0 kg) is standing on a rotating platform (mass= 200 kg). Treat...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A person of mass 70 kg stands at the center of a rotating merry-go-round platform of...

    A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 3.4 m and moment of inertia 940 kg⋅m2 . The platform rotates without friction with angular velocity 1.6 rad/s . The person walks radially to the edge of the platform. Calculate the angular velocity when the person reaches the edge. In rad/sec Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk. In J.

  • A person of mass 77 kg stands at the center of a rotating merry-go-round platform of...

    A person of mass 77 kg stands at the center of a rotating merry-go-round platform of radius 2.8 mand moment of inertia 840 kg⋅m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk.

  • A person of mass 55 kg stands at the center of a rotating merry-go-round platform of...

    A person of mass 55 kg stands at the center of a rotating merry-go-round platform of radius 3.4 m and moment of inertia 670 kg · m2. The platform rotates without friction with angular velocity 2.0 rad/s. The person walks radially to the edge of the platform. (a) Calculate the angular velocity when the person reaches the edge. ......................... rad/s (b) Calculate the rotational kinetic energy of the system of platform plus person before the person's walk. ..........................J (c) Calculate...

  • A person of mass 80 kg stands at the center of a rotating merry-go-round platform of radius 3.5 m and moment of inertia...

    A person of mass 80 kg stands at the center of a rotating merry-go-round platform of radius 3.5 m and moment of inertia 950 kg*m^2 . The platform rotates without friction with angular velocity 0.85 rad/s . The person walks radially to the edge of the platform. 1.Calculate the angular velocity when the person reaches the edge. w=______________ rad/s 2.Calculate the rotational kinetic energy of the system of platform plus person before the person's walk. Ki=____________ J 3.Calculate the rotational...

  • 4. Cons ider the case of a rotating merry-go-round platform of mass of 310 kg and...

    4. Cons ider the case of a rotating merry-go-round platform of mass of 310 kg and radius 3.40 m. A person of mass 85 kg is standing on the outer edge of the merry-go-round platform. The merry-go- round platform with the person standing on its edge, rotates without friction about its central vertical axle with an angular speed of 2.30 rad/s. The person then jumps off the merry-go-round along a line radially outward from the central axle of the platform....

  • 5. Ilan, of mass 75 kg, stands at the center of a rotating merry-go-round platform of...

    5. Ilan, of mass 75 kg, stands at the center of a rotating merry-go-round platform of radius 3.0 m and moment of inertia 820 kg · m². The platform rotates without friction with angular velocity 0.95 rad/s. He walks radially to the edge of the platform. (a) Calculate the angular velocity when Ilan reaches the edge. (b) Calculate the rotational kinetic energy of the system of platform plus person before and after the he makes his walk. (c) While Ilan...

  • A man of mass 75kg stands at the center of a rotating merry-go-round platform of radius...

    A man of mass 75kg stands at the center of a rotating merry-go-round platform of radius 3.0 m and moment of inertia 920 kgm^2. The platform rotates without friction with angular velocity 2.0 rad/s. The man walks radially to the edge of the platform. Calculate: the angular velocity of the system when the man reaches the edge, and the change in the kinetic energy of the system.

  • A carousel has a radius of 1.65 m and a moment of inertia of 126 kg...

    A carousel has a radius of 1.65 m and a moment of inertia of 126 kg · m2 . A girl of mass 48.0 kg is standing at the edge of the carousel, which is rotating with an angular speed of 3.10 rad/s. Now the girl walks toward the center of the carousel and stops at a certain distance from the center d. The angular speed of the carousel is now 5.0 rad/s. How far from the center did the...

  • A carousel has a radius of 1.70 m and a moment of inertia of 130 kg...

    A carousel has a radius of 1.70 m and a moment of inertia of 130 kg · m2 . A girl of mass 46.5 kg is standing at the edge of the carousel, which is rotating with an angular speed of 3.20 rad/s. Now the girl walks toward the center of the carousel and stops at a certain distance from the center d. The angular speed of the carousel is now 5.2 rad/s. How far from the center did the...

  • A person of mass 80 kg stands at the center of a rotating merry go round...

    A person of mass 80 kg stands at the center of a rotating merry go round platform of radius 2.8m and moment of inertia 870kg ×m^2. the platform rotates without friction with angular velocity .95 rad/s. the person walks radially to the edge of the platform. calculate the rotational kinetic energy of the system of platform plus person before and after the persons walk

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT