Question

Question 5 (1 point) An SDoF with a mass of {m} kg and a stiffness of {k} kN/m is subjected to an initial displacement. What

Question 7 (1 point) From the magnitude FRF given below determine how many DoFs are present in the system? Magnitude ratio Oo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

5) Solution : Damping factor (2) Camping coefficient (2 Critical Damping coefficient (CC) SH I K&HC rigure shows spring Dampe

Add a comment
Know the answer?
Add Answer to:
Question 5 (1 point) An SDoF with a mass of {m} kg and a stiffness of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A SDOF system with an equivalent mass of 20 kg, an equivalent stiffness of 3x10'...

    1. A SDOF system with an equivalent mass of 20 kg, an equivalent stiffness of 3x10' N/m and an equivalent viscous damping coefficient of 2500 Ns/m. The system is subject to a sinusoidal pulse of pulse of magnitude 20000 N and total duration of 0.05 sec. Use the response spectrum for a sinusoidal pulse to determine the maximum displacement of the system.

  • Consider a single degree of freedom (SDOF) with mass-spring-damper system

     Consider a single degree of freedom (SDOF) with mass-spring-damper system subjected to harmonic excitation having the following characteristics: Mass, m = 850 kg; stiffness, k = 80 kN/m; damping constant, c = 2000 N.s/m, forcing function amplitude, f0 = 5 N; forcing frequency, ωt = 30 rad/s. (a) Calculate the steady-state response of the system and state whether the system is underdamped, critically damped, or overdamped. (b) What happen to the steady-state response when the damping is increased to 18000 N.s/m? (Hint: Determine...

  • QUESTION 6 130 MARKS For a vibrating system, the body mass is 10 kg, stiffness is 2.5 kN/m, and damping constant is 45...

    QUESTION 6 130 MARKS For a vibrating system, the body mass is 10 kg, stiffness is 2.5 kN/m, and damping constant is 45 Ns/m. A harmonic force of amplitude 180 N and frequency 3.5 Hz acts on the mass. If the initial displacement and velocity of the mass are 15 mm and 5 m/s, compute the complete solution representing the motion of the mass. 45 (30 Marks) QUESTION 6 130 MARKS For a vibrating system, the body mass is 10...

  • The system parameters of a freely-vibrating damped SDOF system are as follows: Mass, m= 100 kg...

    The system parameters of a freely-vibrating damped SDOF system are as follows: Mass, m= 100 kg Damping Factor, c = 200 kg/s Spring Stiffness, k = 3000 N/m Initial Position, x, = 1 m Initial Velocity, v,= 0 m/s a) Create a MATLAB code and using the specified system parameters compute (using the correct units) the system characteristics: 1) natural (circular) frequency on; 2) cyclic frequency fn; 3) cyclic period p; 4) damped natural (circular) frequency 0g, and 5) damping...

  • 2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m...

    2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m = 10 kg, and damping constant c-150 N-s/m. If the initial displacement is xo-o and the initial velocity is 10 m/s (1) Find the damping ratio. (2) Is the system underdamped or overdamped? Why? (3) Calculate the damped natural frequency (4) Determine the free vibration response of the system.

  • Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness 200N/m Zero Damp...

    Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness 200N/m Zero Damper Input: force Output: mass displacement, y Design a PD controller, Kp+ Kd*s, for vibration reduction by root-locus method so that the damping ratio of the closed-loop systems is 0.5 and natural frequency is 3 rad/s Transfer Function of closed-loop system Draw root locus plot Design gains ww Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness...

  • Design dala Observalion deck mass m-25,000 k Danong ratio 0.5% Figure 91. Determine the equation of motion ofthe ๒wer teevibraorntheform (15 marks) mitt) + car)+xt)- where xt) is the horizontal displ...

    Design dala Observalion deck mass m-25,000 k Danong ratio 0.5% Figure 91. Determine the equation of motion ofthe ๒wer teevibraorntheform (15 marks) mitt) + car)+xt)- where xt) is the horizontal displacement of the top of the tower b) Determine the damped natural frequency, fa (in Hz) of the tower (10 marks) ) A radar device, which inckdes a large rotaling eccentic mass, has been (30 marks) nstalled at the top of the tower Unfortunately, it has a trequency of rotation...

  • Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500...

    Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and damping coefficient of 200 kg/s. i) Calculate the undamped natural frequency ii) Calculate the damping ratio iii) Calculate the damped natural frequency iv) Is the system overdamped, underdamped or critically damped? v) Does the solution oscillate? The system above is given an initial velocity of 10 mm/s and an initial displacement of -5 mm. vi) Calculate the form of the response and...

  • A 5-kg mass is attached to a spring with stiffness 15 N/m. The damping constant for...

    A 5-kg mass is attached to a spring with stiffness 15 N/m. The damping constant for the system is 10V3 N-sec/m. If the mass is pulled 10 cm to the right of equilibrium and given an initial rightward velocity of 2 m/sec, what is the maximum displacement from equilibrium that it will attain? The maximum displacement is meters. (Type an exact answer, using radicals as needed.)

  • 4.9.9 3 Question Help A 4-kg mass is attached to a spring with stiffness 108 N/m....

    4.9.9 3 Question Help A 4-kg mass is attached to a spring with stiffness 108 N/m. The damping constant for the system is 2413 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 3 m/sec, what is the maximum displacement from equilibrium that it will attain? The maximum displacement is meters. (Type an exact answer, using radicals as needed.) Enter your answer in the answer box and then click...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT