Question

An ideal vapor-compression refrigeration cycle with R-134a as the working fluid has an evaporator temperature of-15 °C and a

0 0
Add a comment Improve this question Transcribed image text
Answer #1

duon iven 3-S btr 2. sam proces5.0 2.5 1.0 50 140.00 120.00 100.00 う480 80.00 -460 60.00 E 40,00 440 20.00 420 0.00 20.00 4D,00 0.20 0.30 0.40 C 60 28D x=01リumte of each Ponta。 ( fom propecie teble) or fom chaz valme of Enthalpy 229.24 H3 388- 265.2122 .22.926 41-24-2.976 429.84-3Refi ニ3.5Note: RE means Refrigerant Effect.

Thanks

Add a comment
Know the answer?
Add Answer to:
An ideal vapor-compression refrigeration cycle with R-134a as the working fluid has an evaporator temperature of-15...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1.25 bar, and saturated liquid exits the condenser at 5 bar. The mass flow rate of refrigerant is 8.5 kg/min. A. Determine the magnitude of the compressor power input required, in kW (report as a positive number). B. Determine the refrigerating capacity, in tons. C. Determine the coefficient of performance. Please answer all parts of the question. Thanks!

  • Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with...

    Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with ammonia as the working fluid, has an evaporator temperature of -20°C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of refrigerant is 3 kg/minute. Determine the coefficient of performance and the refrigerating capacity in tons. Given: Find: T-s Process Diagram: Schematic Assume:

  • Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle....

    Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle. The evaporator temperature is 8°C and the condenser pressure is 12 bar. Saturated vapor enters the compressor and superheated vapor enters the condenser at 60°C and exits the condenser as saturated liquid. For a refrigeration capacity of 8 tons or 2.816 x104 J/s determine the following: (1) The refrigerant mass flow rate in kg/s; (2) The compressor isentropic efficiency [Hint: Interpolation is required); (3)...

  • An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There are irreversibilities in the compressor. The refrigerant enters the condenser at 16 bar and 160 °C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. Calculate the coefficient of performance, b, and the isentropic compressor efficiency, defined as: 2s Condenser Expansion...

  • A vapor compression refrigeration system operates at steady state with refrigerant 134a as the working fluid....

    A vapor compression refrigeration system operates at steady state with refrigerant 134a as the working fluid. Superheated vapor enters the compressor at 10 lbf/in2 , 0 oF. The liquid leaving the condenser is at 180 lbf/in2 , 100 oF. There is no significant pressure drop in the evaporator or condenser. For compressor efficiency of 83% and refrigeration capacity of 6 tons, determine (a) the compressor power input in horsepower, and (b) the coefficient of performance. A vapor compression refrigeration system...

  • Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle. Saturated vapor enters the...

    Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle. Saturated vapor enters the compressor at h = 400 J/kg and saturated liquid leaves the condenser at h= 242 J/kg. If the mass flow rate of the refrigerant is 0.08 kg/s, and superheated vapor exits the compressor at h = 420 J/kg, pression work will be equal to 1.6 kW inch-h) 6.08(420 - 6oo) = 1.6

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant enters the condenser at 16 bar and 160°C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 150 kW, determine: (a) the mass flow rate of the refrigerant, in kg/s. (b) the power input to the...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant enters the condenser at 16 bar and 190°C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 50 kW, determine: (a) the mass flow rate of the refrigerant, in kg/s. (b) the power input to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT