Question

Steam flows through a turbine at a rate of 19.3 kg/s. It enters the turbine at 500°C and 5 MPa and leaves at 250°C and 500 kPa If the turbine is operated adiabatically, what is the power produced by the turbine? MW It is discovered that this turbine only produces 6.581 MW of power, what is rate of energy loss due to heat transfer? kW Given the actual rate of work supplied by the turbine, what is the efficiency of this turbine?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Steam flows through a turbine at a rate of 19.3 kg/s. It enters the turbine at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A steam turbine operates adiabatically at a power level of 3,500 kW. Steam enters the turbine...

    A steam turbine operates adiabatically at a power level of 3,500 kW. Steam enters the turbine at 2,400 kPa and 500 °C and exhausts from the turbine as saturated vapor at 20 kPa. What is the steam rate through the turbine and what is the turbine efficiency? 1.

  • 2(a) Steam enters a turbine at 6 MPa and 500°C at a rate of 1.5 kg/s...

    2(a) Steam enters a turbine at 6 MPa and 500°C at a rate of 1.5 kg/s and leaves at 20 kPa. Assume the turbine is adiabatic and neglect kinetic energy changes. The power output of the turbine is 2.5 MW. What is the phase of the steam entering the turbine? appendix 1-2.pdf

  • Q2: Steam at 1200 kPa and 400°C enters a steam turbine at a flow rate of...

    Q2: Steam at 1200 kPa and 400°C enters a steam turbine at a flow rate of 20 kg/s. The steam leaves the turbine as a saturated vapour at 35°C. The turbine delivers 10 MW of power. Determine the heat transfer rate from this turbine.

  • Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s

    Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s, and leaves at 100 kPa and 75 m/s. If the power output of the turbine is 5 MW and the isentropic efficiency is 77 percent, determine: A. the mass flow rate of steam through the turbine, B. the temperature at the turbine exit, and C. the rate of entropy generation during this process.

  • 01: Steam enters the first turbine at 15.0 MPa and 600°C. The pressure in the condenser...

    01: Steam enters the first turbine at 15.0 MPa and 600°C. The pressure in the condenser is 20.0 kPa. While some steam is extracted from the high-pressure turbine at 5 MPa and sent to the closed feedwater heater, the remaining steam is reheated to 600°C. The extracted steam is condensed as saturated liquid at 5.0 MPa and trapped to the open feedwater heater. Some steam is extracted from the lower-pressure turbine at 1.0 MPa and sent to the open feedwater...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

  • Please show steps. Steam at 0.3 kg/s enters an adiabatic turbine at 2 MPa and 500°C....

    Please show steps. Steam at 0.3 kg/s enters an adiabatic turbine at 2 MPa and 500°C. It exits at 100 kPa. If the isentropic efficiency is 95%, how much power is produced, in units of kW? Correct Answer is 514.1 m/s Thank you.

  • Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s

    Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s, and leaves at 150 kPa and 350 m/s. The isentropic efficiency of the turbine is 85%. Neglect potential energy. (I) Determine the exit temperature of the steam, and its quality (if saturated mixture)  (ii) Calculate the actual power output of the turbine, in kW (iii)  Illustrate a T-s diagram with respect to saturation lines for the isentropic process by clearly indicating all pressure, temperature,...

  • 3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and...

    3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and 700 C. The mass flow rate of the steam is 200 kg'min. The steam exits the turbine as a saturated vapor at 3 bar. The turbine produces 3.0 MW of power. Ignore potential and kinetic energy effects. Assuming heat transfer from the turbine to the surroundings occurs at 20 C, determine: (a) (20 pts) The rate of heat transfer, in kW (b) (20 pts)...

  • 1. A steam turbine has an inlet of 2 kg/s water at 1000 kPa and 350...

    1. A steam turbine has an inlet of 2 kg/s water at 1000 kPa and 350 °C with a velocity of 15 m/s. The exit is at 100 kPa, 150 °C, and very low velocity. Determine the power produced. 2. A small expander (a turbine with a heat transfer) has 0.05 kg helium entering at 1000 kPa, 550 K, and it leaves at 250 kPa, 300 K. The power output on the shaft is measured at 55 kW. Determine the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT