Question

Slalludlu basis with a n 9.36 Solve Problem 9.35 on a cold d specific heats evaluated at 298 K. (0.37 Consider an ideal air-s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Soln Civen! - Ti =290k T3 = 1400k ble know that Pressure ration het wook - for maximum Port = Seman) s Imax = Tmax airn 1.4 PTurtone work- Using SFEE- hz = hqthly klep Cpl Tz-TA) = 1005( 1400–645.9) 1 kly = 757.07 kolky Turbine blosk ② Heat suppliedpo 1 Dook Yoohl 12001 Efficiency Pressure Ration

Add a comment
Know the answer?
Add Answer to:
Slalludlu basis with a n 9.36 Solve Problem 9.35 on a cold d specific heats evaluated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. Repeat Problem 5, but use constant specific heats at the average temperature of (900 K+310...

    6. Repeat Problem 5, but use constant specific heats at the average temperature of (900 K+310 K)2. This will give results that should be comparable (but not identical) to those of Problem 5. 5. A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid and delivers 32 MW of power. The minimum and maximum temperatures in the cycle are 310 and 900 K, and the pressure of the air at the compressor exit is...

  • Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with...

    Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with a mass flow rate of 6 kg/s. the compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k = 1.4, calculate a. The thermal efficiency of the cycle b. The back work ratio c. The net power developed, in kW d. Reconsider the above with an ideal regenerator.

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • Air enters the compressor of an ideal air standard Brayton cycle at 195 kPakPa, 298 KK,...

    Air enters the compressor of an ideal air standard Brayton cycle at 195 kPakPa, 298 KK, with a volumetric flow rate of 7 m3/sm3/s. The compressor pressure ratio is 8. The turbine inlet temperature is 1400 KK. The compressor has an efficiency of 90%% and the turbine has an efficiency of 75%%. A) Determine the thermal efficiency (ηth,Braytonηth,Brayton). B) Determine the net power output (W˙netW˙net). C) Determine the back work ratio.

  • Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12...

    Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12 and a mass flow rate of 5.0 kg/s. Air enters the compressor at 1 bar, 290 K. The maximum cycle temperature is 1600 K. For the compressor, the isentropic efficiency is 85%, and for the turbine the isentropic efficiency is 90%. Using an air-standard analysis with air as ideal gas with constant specific heats, calculate: a) the volumetric flow rate of air entering the...

  • A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and...

    A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and 727°C. It is designed so that the maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. The isentropic efficiency of the turbine is 96 percent. Determine the net work produced per unit mass of air each time this cycle is executed and the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room...

  • Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...

    Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 7.5 m3/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1400 K. Determine the following: The thermal efficiency of the cycle The back work ratio The net power developed in kW

  • Hw#2 (Protect FILE TOOLS VIEW PROTECTED VIEW Be careful-files from the internet can contain vinuses. Unless...

    Hw#2 (Protect FILE TOOLS VIEW PROTECTED VIEW Be careful-files from the internet can contain vinuses. Unless you need to edit, it's safer to stay in Prot 1. An air-standard Otto cycle has a compression ratio of 9.0. At the beginning of compression, p1-100 kPa and T1-300 K. The heat addition per unit mass of air is 1400 kJ/kg. Determine (a) the net work, in kJ per kg of air. (b) the thermal efficiency of the cycle. (e) the maximum temperature...

  • 24-1: The net power produced by an air-standard Brayton cycle is 1500 kW. The pressure ratio for ...

    24-1: The net power produced by an air-standard Brayton cycle is 1500 kW. The pressure ratio for the cycle is 12 and the minimum and maximum temperatures are 20˚C and 1450˚C respectively. The isentropic efficiencies of the compressor and turbine are 0.75 and 0.80 respectively. Assume an ambient pressure of 100 kPa. Determine: a. The thermal efficiency of the cycle b. The mass flow rate of the air, in kg/s. c. The heat added during the combustion process, in kW....

  • in Problem II: The Brayton cycle is an idealized gas turbine power cycle that can be...

    in Problem II: The Brayton cycle is an idealized gas turbine power cycle that can be modeled through the four reversible steady flow devices shown in the diagram. Use air as the working fluid with variable specific heats. Heat If the thermal source is at 700°C, and the thermal sink is at 35℃ what is the maximum thermal efficiency for a cycle operating between these two thermal reservoirs? (5 pts) A. CompressorTurbine B. In the real cycle, air enters the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT