Question

Standing Waves in a Pipe - Both Ends Open Pattern (a) Pattern (b) Pattern (c) Pattern (d) The above figure shows standing wav(C) In Pattern (c), What is the wavelength? Enter a number m Submit (5 attempts remaining) What is the frequency of pattern (

0 0
Add a comment Improve this question Transcribed image text
Answer #1

c) We have the third harmonics: 2L 2.1 1.40 m = - = 2 * 3 The frequency is: 343 245 Hz f : 1.40 d) We have the fourth harmoni

Add a comment
Know the answer?
Add Answer to:
Standing Waves in a Pipe - Both Ends Open Pattern (a) Pattern (b) Pattern (c) Pattern...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz.    a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch write the wavelength for each pipe in terms of the pipe lengths LA...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz. a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch, write the wavelength for each pipe in terms of the pipe lengths LA and...

  • Problem 4 [8 pts] A long pipe, length L, is closed at both ends, and filled...

    Problem 4 [8 pts] A long pipe, length L, is closed at both ends, and filled with a gas with speed of sound v. The pipe is excited in some fashion in order to produce standing waves. (a) Sketch the standing wave pattern for the four lowest frequencies supported by this pipe. Label the nodes and antinodes. (b) Make a table of the wavelengths and frequencies of the sound waves that are formed by these four excitations, in terms of...

  • a) Find the pattern of allowed wavelengths and frequencies for standing waves inside a pipe of...

    a) Find the pattern of allowed wavelengths and frequencies for standing waves inside a pipe of length L open at both ends. Show how you arrive at your answer. b) If the length of the pipe is 1.00 m and it is filled with air, tell me the frequency of the 5th harmonic.

  • 6. The standing wave is formed in a tube of length L which is open at...

    6. The standing wave is formed in a tube of length L which is open at both ends. The shape of this standing wave is shown in the picture, whereas the frequency of the 5th harmonic is 450 Hz. Speed of sound is 343 m/s. Find (a) length L of the tube, and (b) harmonic’s number n; (c) wavelength, and (d) frequency of the wave shown in the picture.

  • A tube, open at the left end and closed at the right, has standing-wave patterns at...

    A tube, open at the left end and closed at the right, has standing-wave patterns at frequencies of 198 Hz and 330 Hz. The speed of sound in air is 343 m/s. The lowest two harmonics (normal modes) that these two standing waves could be are m = and The frequency of the fundamental (m = 1) is Hz. The wavelength of the fundamental mode is m. The tube is m long

  • Waves and Optics Problem 12.21 9 of 18 If the pipe is open at both ends,...

    Waves and Optics Problem 12.21 9 of 18 If the pipe is open at both ends, determine the locations along the pipe (measured from the left end) of the displacement nodes for the first overtone. Constants Express your answer(s) in meters to three significant figures, separated by commas, if there is more than one location. Standing sound waves are produced in a pipe that is 1.40 m long 1.05,1.75 Submit Previous Answers Reguest Answer X Incorrect; Try Again; 5 attempts...

  • Organ pipe A with both ends open has a fundamental frequency of 320.0 Hz. The third...

    Organ pipe A with both ends open has a fundamental frequency of 320.0 Hz. The third harmonic of organ pipe B with one end open has the same frequency as the second harmonic of pipe A. Assume a speed of sound of 343 m/s. What is the length of Pipe A? What is the length of Pipe B?

  • SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s...

    SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s Substitute into whole harmonics equation, with n = 1. 11-222(2.46 m) = 69.7 Hz Multiply to find the second and third harmonics. 12 - 27 - 139 Hz 13 = 3f7 - 209 Hz (B) How many harmonics lle between 20 Hz and 20000 Hz for this pipe? 343 m/s Set the frequency in the harmonics equation equal to 2.00 x 104 Hz and...

  • part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string...

    part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string has a mass of 45 g and under a tension of 50 N. a. What is the frequency of vibration? b. At the same frequency, you wish to see four loops, what tension you need to use. Part 2. a. Determine the shortest length of pipe, open at both ends, which will resonate at 256 Hz (so the first harmonics is 256Hz). The speed...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT