Question

A 0.200 kg block is released from rest at a height h= 1.25 m above the level portion of the track shown below. The track is r

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a look energy theorem mgn - 0.49 ă tkx? = 0 5(0.239.8x 1-25) – 0.43 ]2= 225 x² = 0.01742 215 0.132 Ny distance from A = 0.85+

Add a comment
Know the answer?
Add Answer to:
A 0.200 kg block is released from rest at a height h= 1.25 m above the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A) A 5.0-kg block is released from rest at point A

    A) A 5.0-kg block is released from rest at point A. The track is frictionless except for the portion between points B and C, which has a length of 8.0 m. The block travels down the track, hits a spring of force, constant 2000 N / m, and compresses the spring 0.20 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C.assume...

  • 3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then tra...

    3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then traverses a 2.0 metter rough patch with a coefficient of kinetic friction 0.35 It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 n/m. Please help me Solve the rest of the physics problem The answers to part A is x= 1.64 meters and part b is 1.58 meters Problem 1 A 3.0 kg block slides...

  • (a) A 15.0 kg block is released from rest at point A in the figure below.

    (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,200 N / m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface...

  • Assume g = 10 m/s2 A 4.0-kg block is released from rest at point A. The...

    Assume g = 10 m/s2 A 4.0-kg block is released from rest at point A. The track is frictionless except for the rough portion between points B and C. The block travels down the track, hits a spring of force constant 2000 N/m, and compresses the spring 0.20 m from its equilibrium position before coming to rest momentarily. What is the work done by the gravitational force as the block moves from A to B? (A) 3.00 m M Select...

  • Assume g = 10 m/s2 A 4.0-kg block is released from rest at point A. The...

    Assume g = 10 m/s2 A 4.0-kg block is released from rest at point A. The track is frictionless except for the rough portion between points B and C. The block travels down the track, hits a spring of force constant 2000 N/m, and compresses the spring 0.20 m from its equilibrium position before coming to rest momentarily. What is the work done by the gravitational force as the block moves from A to B? 3.00 m Select one: O...

  • i posted the firt question please answer the second pic A 2.0-kg block is released from...

    i posted the firt question please answer the second pic A 2.0-kg block is released from rest at point A. The track is frictionless except for the rough portion between points B and C. The block travels down the track, hits a spring of force constant 1000 N/m, and compresses the spring 0.20 m from its equilibrium position before coming to rest momentarily. The mechanical energy of the system at point C is greater than the mechanical energy of the...

  • A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m

    (a)A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,300 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B...

  • 3.0 - 6.00 m ASSO 13.0-kg block is released from point A with initial speed of...

    3.0 - 6.00 m ASSO 13.0-kg block is released from point A with initial speed of -2.0 m/s ( block is given a push up or down the ramp). The track is frictionless except for the portion between points B and C which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,000 N/m, and compresses the spring 0.20 m from its equilibrium position before coming to rest momentarily. Determine the...

  • A 16.0 kg block is released from point A in Figure P8.57. 3.60 m -5.50 m...

    A 16.0 kg block is released from point A in Figure P8.57. 3.60 m -5.50 m The track is frictionless except for the portion between B and C, which has a length of 5.50 m. The block travels down the track, hits a spring of force constant k = 1950 N/m, and compresses the spring 0.340 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between...

  • A 10.0 kg block is released from rest at point A. The track is frictionless except...

    A 10.0 kg block is released from rest at point A. The track is frictionless except for the portion between points B and C, which has a length of 6.00m. The block travels down the track, hits a spring of force constant 2250 N/m, and compresses the spring 0.300m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. I am trying to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT